Pre-programming anisometric microgels to orthogonally study the effect of mechanical signals on epithelia in 3D tissue models
DWI - Leibniz Institute for Interactive Materials
Project overview. (A) shows a comparison of spheroid outgrowth in PEG hydrogels (6.5% [w/w]) with different ratios of degradable crosslinkers. (B) PEG hydrogel stiffening and softening can be induced on demand with UV light. (C) Nerve growth and alignment depends on microgel stiffness in Anisogel. (D) The angle of orientation of the microgels inside an Anisogel can be preprogrammed by pre-aligning ellipsoidal maghemite nanoparticles, resulting in orthogonal alignment of microgels and cells. (E) presents RGD-functionalized ester-linked PEG microgels (8-arm, 20 kDa, 5% [w/v]) covered with immortalized CD10 kidney epithelial cells after 4 days of cultivation. (F) Degradation of ester-linked PEG microgels is observed after adding 20 mg/ml cellulase (8-arm, 20 kDa, 5% [w/v]; degradation time: 10 h).