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Fluctuations of surfaces that harbor reactive molecules interacting across the intervening space strongly
influence the reaction kinetics. One such paradigmatic system is the cell membrane, with associated
proteins, binding to an interior or an exterior scaffold—for example, the cytoskeleton in the former and the
extracellular matrix in the latter case. Given that membrane fluctuations are significant and regulated by
the activity of the cell, we hypothesize that these active fluctuations can be tuned to influence ligand-
receptor-mediated adhesion. However, a comprehensive model, deriving both binding and unbinding rates
from first principles, has not yet been established, and as such, the effect of the membrane activity on the
rates remains an open problem. Here, we solve this issue by establishing a systematic coarse graining
procedure, providing a cascade of expressions for rates appropriate for the observed timescale, and present
a scale-free formulation of rates. In the first step, we introduce a minimal model to recover the so-called
Bell-Dembo rates from first principles, where the binding and unbinding rates depend on the instantaneous
position of the membrane. We then derive the analytical coarse-grained rates for thermal fluctuations,
recovering a result that has previously been successfully used in the literature. Finally, we expand this
framework to account for active fluctuations of the membrane. In this step, we develop a mechanical model
that convolutes Gauss and Laplace distributed noise. This choice may have universal features and is
motivated by our analysis of measurements in two very different cell types, namely, human macrophages
and red blood cells. We find that cell activation enables the formation of bonds at much larger separations
between the cell and the target. This effect is significantly greater for binding to a surface on the
extracellular compared to the intracellular side. We thus show that active fluctuations directly influence
protein association and dissociation rates, which may have clear physiological implications that are yet to
be explored.

DOI: 10.1103/PhysRevX.12.031030 Subject Areas: Biological Physics, Soft Matter,
Statistical Physics

I. INTRODUCTION

The plasma membrane of a biological cell is never at rest.
Driven by thermal noise and by biological activity, its shape

is constantly experiencing rapid oscillations with ampli-
tudes of up to a couple hundred nanometers [1]. The
thermal component of the membrane spectrum has been
extensively studied, and a full theoretical foundation has
been established over the years [2–7]. It is set by thermo-
dynamic conditions such as temperature and pressure, and
can be altered locally by modifications of the membrane
material properties or the introduction of constraints.
On the other hand, the active component of fluctua-

tions, albeit clearly identified [8], is significantly less well
understood. The relationship between the responsible
biological processes and the stochastic excitations of the
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membrane is still subject to debate [8,9]. The proposed
sources of activity include conformational changes of
channels and pumps occurring during molecular trans-
port [10], membrane-actin interactions [11,12], membrane-
embedded motors [13], and curvature-inducing [14–16]
and thickness-composition changing [17] protein-membrane
interactions, among other possibilities.
As the membrane plays an important functional role in

cells, it is no surprise that the nature of its fluctuations
has an effect on many cellular processes. Notably, it is
recognized that thermal membrane fluctuations can affect
the kinetics and affinity of membrane adhesion receptors
[18–22]. Thus, actively modifying membrane fluctuations
could serve as an efficient tool for dynamic regulation
of membrane receptor kinetics, a feature that could be
exploited by the cell for localized control of its interactions
with the environment. Indeed significant spatiotemporal
variability of active fluctuations has been shown to exist in
different cells [23]. Moreover, the local coupling between
active fluctuations and cell adhesion has been reported in
several cellular systems [24,25], hinting at the role of active
fluctuations in regulating the formation of cadherin bonds.
Similarly, macrophage activation with cytokine interferon
gamma (IFNγ) reflects in the increase of both the mem-
brane activity [23,26] and the Fc receptor avidity [27],
hinting at the causal relation between the two.
The above considerations beg for a better experimental

and theoretical understanding of the interplay between
membrane fluctuations and receptor kinetics.
The current theory of active membranes is usually based

on specific mechanistic models expressed typically by a set
of stochastic equations with the appropriate noise correla-
tions (for a review of active models, see Ref. [9]). However,
even for some of themost studied systems, such as theRBCs,
for which the membrane activity has been well studied and
experimentally confirmed [8,28], the main source of activity
is still debated. The situation is even more obscured as the
structural complexity of cells increases. Moreover, it would
not be surprising if the exact mechanistic processes behind
activity vary across different types of cells, mirroring the
differences in their mechanistic and chemical structure.
Consequently, commitment to specific sources of membrane
activity during modeling severely restricts the applicability
of the derived fluctuation model. Hence, there is a need for a
unifying modeling principle that would enable the construc-
tion of a general, cell-type-independent framework for
ligand-receptor binding in membranes.
If unconstrained, ligands and receptors bind following a

lock-and-key principle, characterized by the so-called intrin-
sic rate, over a reaction coordinate that relies on structural
complementarity of the receptor for its ligand. However,
confinement of the receptor to themembrane thatmaintains a
separation from the ligand introduces constraints (Fig. 1).
The first constraint to consider is the role of confinement of

ligands and receptors in the membrane, as discussed by Bell,
Dembo, and Bongrand [29,30]. Using phenomenological

arguments, they postulated that the unbinding rate depends
on the force applied to the bond [29], while the binding rate
was set to depend on the deformation energy of the bond,
when the separation between the adherent surfaces is fixed
[31]. Besides being used formodeling cell adhesion [29–32],
these rate formulations have received numerous experimen-
tal support [21,33–36].
These rates were further modified in an ad hoc way to

account for detailed balance and entropic considerations
[32]. Such derivation leaves room for ambiguous inter-
pretations of the normalizing factors, load-sharing coef-
ficients, and the functional dependence on the intrinsic
binding affinity, all of which were extensively discussed in
the literature [37–39]. This ambiguity could be resolved by
a first-principles derivation of the Bell-Dembo rates, which,
from the start, accounts for the desired constraints such as
detailed balance. Unfortunately, theoretical approaches
to derive Bell-Dembo rates from first principles are still
scarce. One attempt to derive the unbinding Bell rate was
based on the Kramers’ theory for the diffusive crossing
of a model barrier in a simple free energy profile, first
done in Refs. [40,41] and later in Refs. [42,43]. However,
only irreversible bond breaking has been considered so
far, which is, nonetheless, useful for the interpretation of
single-molecule pulling experiments. However, this is not
sufficient to describe the reversible binding associated with
receptor-ligand interactions.
Over the last decades, further evidence was established

that not only the average position of the membrane but also
its roughness strongly affect the protein complexation rates
[19,21,44–46]. To quantitatively study this relation, Bihr
et al. [18,32] introduced the concept of coarse-grained
(un)binding rates, which directly depend on the membrane
fluctuation distribution [18,32]. The notion of coarse-
grained (CG) rates has since been experimentally validated
in mimetic [21] and cellular [22] systems, within the caveat
of Gaussian noise and detailed balance.
However, there are several open issues with CG rates

[18,32]. First of all, the CG rates are based on the
phenomenological Bell-Dembo rates [29,31]. Second, the
CG rate framework has been developed and tested only in

FIG. 1. Schematic representation of the system. The membrane
(purple) that anchors receptors (yellow) fluctuates above the
target surface. The membrane is locally deformed when the
receptor forms a bond with the surface ligand (red).
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the context of thermal fluctuations. The effect of membrane
activity on CG rates has not been studied so far, and it has
not been clear how to generalize the CG rates to efficiently
account for fluctuations that deviate from the purely
thermal case. The main obstacle has been the idiosyncrasy
of membrane driving mechanisms for different cell types
and corresponding dynamical models that attempt to model
the resulting membrane fluctuations.
The aim of this paper is therefore twofold. First, it gives a

first-principles derivation of the Bell-Dembo rates by
formulating a generic, analytical model that ensures
detailed balance and takes into account the reversibility
of the (un)binding process, thus deriving rates that validate
Bell and Dembo’s assumptions about the rate dependence
on energy and force [21,32]. We follow up by integrating
the derived Bell-like rates assuming Gaussian membrane
fluctuations, thus deriving the Gaussian CG rates from first
principles. Second, we extend our rate analysis to non-
equilibrium conditions using an experimentally measured
active-fluctuation spectrum. We first demonstrate that the
height probability distributions of resting and activated
human macrophages (HMs) and red blood cells (RBCs)
can be modeled as a convolution of an asymmetric
exponential and a Gaussian component, although their
physiology and activation mechanisms are completely
different. Hypothesising that this feature may be broadly
relevant, we build a minimal mechanical model for this type
of fluctuation spectrum. We derive the non-Gaussian CG
rates, demonstrating the direct effect of fluctuations on the
dynamics of binding. Finally, we show that rates can be cast
into a universal form, irrespective of the timescales and of
the nature (thermal or active) of membrane fluctuations.

II. SEPARATION OF TIMESCALES AND
THE EFFECTIVE-RATES APPROACH

Our approach is motivated by a timescale separation
between various degrees of freedom involved in ligand-
receptor binding (Fig. 2). In the Kramer picture, the
fundamental timescale for the binding and unbinding
processes is defined by the height of the barrier between
the bound and the unbound states. These barriers are
functions of the protein conformation and membrane
positions, setting the instantaneous rates kþ and k−

(Fig. 2). Structural fluctuations of the membrane-protein
system may appear as fluctuations in the heights of these
barriers, which can be systematically integrated.
One starts with the fastest degrees of freedom—that of

the proteins. Conformational changes of proteins may
exhibit different characteristics with the reported timescales
in the ps to 1-μs regime [47] and may be triggered by an
extracellular or intracellular stimulus or thermal excita-
tions. Small structural fluctuations are fastest and occur on
timescales of 10−15–10−12 s. On somewhat slower length
scales, one encounters side chain flips (10−10–10−8 s) and
then the domain motions (10−7–10−5 s). These motions

have to be delineated from larger secondary structure
transformations which typically occur on slower timescales
between 10−6 and 10−3 s. Some examples of these slow
changes are allosteric transitions [48,49], cadherin catch
bond lifetimes up to 10−2 s [50], or the spontaneous
opening of the integrin on 1 μs timescales [51].
The fastest degrees of freedom of the protein are several

orders of magnitude faster than the fastest membrane
fluctuation modes. We thus make an assumption that for
each position of the membrane h, the receptor has time to
explore all its available configurational space, enabling us
to represent receptor fluctuations by an equilibrium proba-
bility distribution. A natural timescale k0 appears, which is
related to the free energy gain for creating a bond ϵb in an
unconstrained ligand-receptor pair. As a result, one obtains
rates kon and koff for a fixed membrane position, with all
properties as suggested by Bell and Dembo. According to
this approach, however, large, typically slow conformational
changes of proteins should be treated as two populations of
receptors as each conformer will have a specific size, elastic
constant, affinity, and binding-pocket size.
In the next step (Fig. 2), one considers active and thermal

membrane fluctuations as significantly faster than the bond
kinetics. The characteristic timescales associated with the
majority of active and thermal membrane fluctuation modes
arewithin the range of 0.01–10 s [8]. For example, character-
istic relaxation times of membrane fluctuations have been
measured in red blood cells (τ ¼ 0.1 s) and macrophages
(τ ¼ 0.8 s) [23]. This is consistent with timescales of active
membrane processes, among which are fast protrusions and
retractions due to the local (de)polymerization of individual
actin filaments. Their association rate is estimated to be
kon ¼ 10 ðμMsÞ−1, which for typical actin concentrations of

FIG. 2. Schematic representation of the rate averaging pro-
cedure and the relevant timescales in the system.
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50 μM, gives kon ¼ 5 × 102 s−1, while the dissociation rate
is estimated to be koff¼1s−1 [52], falling into the 0.001–10 s
interval [8]. It is these fluctuations that determine the
probability for a membrane-anchored receptor and its target
ligand to be within a binding range [20,53,54].
For unbinding, membrane fluctuations act as stochastic

forces on already-formed bonds, promoting their breaking.
Hence, Bell-Dembo rates, even when taking into account
the mean membrane position, do not give an accurate
estimate of the timescale on which the ligand-receptor
(un)binding actually occurs. The effects of membrane
fluctuations, nonetheless, can be integrated into coarse-
grained rates Kon and Koff , under the assumption that the
membrane explores its entire height distribution function
prior to (un)binding.
The former assumption is well justified for the majority

of biological ligand-receptor pairs. Namely, to justify
the calculation of the unbinding rate Koff , it is instructive
to discuss the weak ligand-receptor pairs for which the
unbinding is more probable on shorter timescales than for
stronger bonds. Thus, focusing on P-selectin, the dissoci-
ation rates Koff ¼ 1–10 s−1 were reported in using flow
chamber or adhesion experiments [33,35,36]. Therefore,
the lower bound for the unbinding timescale of typical
ligand-receptor pairs is estimated to be around 10−1 s. On
the other hand, the majority of fluctuation modes of a
bound membrane are expected to be faster than 10−1 s due
to the suppression of slow membrane modes by the formed
bond [55], ensuring that the membrane statistically explores
available configurations before the unbinding event.
Similar arguments give justification to the integration of

fluctuations into the binding rate Kon. Namely, typical
values of the binding rates were estimated to be approxi-
mately 103 s−1 for the biotin-avidin bond (the strongest
receptor-ligand bond found in nature, Eb ¼ 35kBT [56]),
approximately 100–101 s−1 for integrin-RGD (Eb¼10kBT),
and approximately 10−1 s−1 for integrin-sialyl Lewis
X (Eb ¼ 5kBT), as determined from growth models [20].
These estimates were done for radially expanding adhesions
where the membrane is constrained to approximately 50 nm
above receptors. This is why the reported timescale for biotin
binding is several orders of magnitude larger than the
timescale determined by fitting the Bell rate to the force-
lifetime curve (approximately 10−10 s), when the binders are
in close proximity.
First contacts between cells or of the cell with the

extracellular matrix occur on even larger separations, and
consequently, the rates for the initial bond formation are
expected to be a couple orders of magnitude smaller than the
rates for the formation of the following bonds. Hence, for
typical adhesion receptors, the binding rate of the initial bond
is estimated to beKon < 10−1 s−1, or in terms of timescales,
τon > 10 s, which is slower than the slowest membrane
modes (approximately 1–10 s). Thus, the separation of
timescales is a reasonable assumption, which is expected

to hold for typical cellular systems. Furthermore, the sepa-
ration of timescales should also be valid for second and
additional bonds, as both the binding rate and the relevant
membrane timescales decrease simultaneously [55].
Note that our coarse-graining procedure does not

account for the much slower remodeling of the global
cellular shape, which is usually coupled to the significant
remodeling of the cytoskeleton, which mechanically
pushes the membrane and creates macroscopic protrusions.
As the formation of membrane protrusion is an active,
directed process, it requires a more complex regulation of
the actin meshwork, involving the interaction of different
proteins such as WASp, VASP, formin, or fascin [57].
Consequently, the membrane protrusion rates are within
1–2 μm=min [58,59], much slower than the fast membrane
fluctuations around the mean shape which are the focus of
our coarse-graining procedure. However, such slow, global
remodeling of the cellular shape can be accounted for
by repeated calculation of the CG rates Kon and Koff for
different cell shapes.
Although we have outlined the general recipe for

calculating the CG rates, we still have to specify the exact
form of the Bell-Dembo rates and the model for membrane
fluctuations that would capture both the thermal and the
active cases. We show a first-principles derivation of the
Bell-Dembo rates in Sec. III, and we specify the membrane
fluctuation models and average the Bell-Dembo rates into
CG rates in Sec. IV. We show that the coarse-grained rates
can also be cast in a simple Bell-like form, even in the
presence of membrane activity, in Sec. V.

III. BELL-LIKE RATES FROM FIRST
PRINCIPLES—THE ROLE OF RECEPTOR

STRUCTURAL FLEXIBILITY

We start with a model system that consists of a target-
ligand positioned at a distance h from a membrane with a
receptor [Fig. 3(a)]. The target surface and the membrane
are assumed to be immobile (we will tackle the problem of
a fluctuating membrane later). We ignore the size of
the ligand for simplicity. The receptor, on the other
hand, has a finite size l0 and is modeled as a fluctuating
harmonic spring of stiffness λ. For convenience, we define
λ ¼ λ̃=kBT, with Boltzmann constant kB and temperature
T, where λ̃ is in units of kBT=length2 and λ is in units
1=length2. The spring is anchored to the membrane at one
end, and its tip is exploring the coordinate l.
This setup accounts for the fact that the structural

fluctuations of the receptor happen on the ps-μs timescale
[48,49], which is several orders of magnitude faster than the
fastest membrane fluctuation modes. Thus, for all practical
purposes, the membrane is stationary on these timescales.
When the tip of the fluctuating receptor and the ligand
are within a binding range, i.e., when the ligand is in
the binding pocket of the receptor, they may form a bond.
The pocket is modeled by a square well of width α, centered
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at the target, and a depth ϵb, denoting the intrinsic binding
affinity of the pair. Again, for convenience, we define
ϵb ¼ ϵ̃b=kBT, where ϵ̃b is in units of kBT and ϵb is
dimensionless. The system therefore explores two states.
The first is the unbound state forming with the rate koffðhÞ,
in which the receptor explores its conformational space
independently of the ligand. The second state is the bound
state forming with the rate konðhÞ, in which the receptor
fluctuates within the binding pocket.
The internal energy of the system is captured by the

dimensionless potential profile VðlÞ [Fig. 3(b)],

VðlÞ ¼

8>>>>><
>>>>>:

∞ if l ∈ ðh;þ∞Þ
λ
2
(l − ðh − l0Þ)2 if l ∈ ðα=2; h�

λ
2
(l − ðh − l0Þ)2 − ϵb if l ∈ ½−α=2; α=2�

∞ if l ∈ ð−∞;−α=2Þ:

ð1Þ

Here, the origin of the coordinate system is set at the
target surface [Fig. 3(a)]. The potential profile consists
of a harmonic potential with minimum at h − l0 (modeling
receptor elasticity), shifted by ϵb in the interval ½−α=2;
α=2�. Positions − α=2 and h are considered impermeable
walls. The potential profile is naturally separated into two
regions, representing the unbound state u ¼ ðα=2; h� and
the bound state b ¼ ½−α=2; α=2�.
Given that the conformational changes of the protein

are fast compared to the membrane, we assume that the
receptor fluctuations reach thermal equilibrium for each
membrane position. Hence, the probability distribution
pðlÞ for the position of the receptor tip l at some fixed
h follows the Boltzmann distribution

pðlÞ ¼ e−VðlÞ

Z
; with Z ¼

Z
∞

−∞
dle−VðlÞ; ð2Þ

where Z is the partition function of the system and VðlÞ is
the potential profile given in Eq. (1).
Under these circumstances, the rates konðhÞ and koffðhÞ

are given for a fixed membrane-target distance h by

konðhÞ ¼
jðhÞ
puðhÞ

and koffðhÞ ¼
jðhÞ
pbðhÞ

: ð3Þ

The subscript u denotes the unbound state and b the
bound state, and puðhÞ and pbðhÞ are thermal equilibrium
probabilities of being in the respective states, while jðhÞ≡
jju→bðhÞj ¼ jjb→uðhÞj is the magnitude of the unidirec-
tional current between the states in equilibrium, with
ju→bðhÞ ¼ −jb→uðhÞ.
The probabilities puðhÞ and pbðhÞ are given by integrat-

ing the Boltzmann probability pðlÞ over the corresponding
regions of the states,

puðhÞ¼
1

Z

Z
h

α=2
dlexp

�
−
λ

2
ðh− l− l0Þ2

�

¼ 1

Z

ffiffiffiffiffi
π

2λ

r �
erf

h ffiffiffiffiffiffiffi
λ=2

p
l0�þerf

h ffiffiffiffiffiffiffi
λ=2

p
ðh− l0−α=2Þ

i�

≈
1

Z

ffiffiffiffiffi
π

2λ

r �
erf

h ffiffiffiffiffiffiffi
λ=2

p
l0
i
þerf

h ffiffiffiffiffiffiffi
λ=2

p
ðh− l0Þ

i�
;

ð4Þ

pbðhÞ ¼
1

Z

Z
α=2

−α=2
dl exp

�
−
λ

2
ðh − l − l0Þ2 þ ϵb

�

¼ 1

Z
eϵb

ffiffiffiffiffi
π

2λ

r �
erf

h ffiffiffiffiffiffiffi
λ=2

p
ðh − l0 þ α=2Þ

i
− erf

h ffiffiffiffiffiffiffi
λ=2

p
ðh − l0 − α=2Þ

i�
≈

1

Z
α exp

�
−
λ

2
ðh − l0Þ2 þ ϵb

�
; ð5Þ

FIG. 3. Schematic representation of the model. (a) A receptor
(spring) anchored to the membrane and the ligand (red circle) on
the target surface. The surface and the membrane are separated by
an instantaneous distance hðtÞ, which determines the binding rate
konðhÞ and the unbinding rate koffðhÞ. (b) The model interaction
potential (dashed line) between the ligand and the receptor. It
consists of a harmonic potential centered at the position of the
receptor’s rest length h − l0, shifted by a square well potential of
width α and depth ϵb centered at the surface with the ligand. The
red shaded area denotes the bound receptor state, while the blue
shaded area denotes the unbound receptor state.
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where we assumed α=2 ≪ h − l0 to expand the error
functions. This is equivalent to stating that the binding
pocket size α (angstrom scale) is much smaller than the
distance between the target surface and the receptor rest
position at h − l0 (nanometer scale). The most important
consequence of this reasonable approximation is that pu is
effectively independent of α while pb is linear in α.
The current jðhÞ is given by integrating over every path

from state u to state b,

jðhÞ≡ jju→bðhÞj ¼
Z

∞

α=2
dlu

Z
α=2

−α=2
dlbpðluÞkþðlu; lbÞ; ð6Þ

where kþðlu; lbÞ are the rates of transitions between any
pair of microscopic states lu ∈ u and lb ∈ b. Similarly,
we can introduce the current jb→uðhÞ that depends on
k−ðlb; luÞ, which are the rates of transitions from lb
to lu. Given the equilibrium condition, detailed balance
kþðlu; lbÞ=k−ðlb; luÞ ¼ exp½ϵb − ðλ=2Þðlb − luÞ2� must be
satisfied. Hence, jju→bðhÞj ¼ jjb→uðhÞj, and it is enough
to determine one of the two currents.
To proceed with the calculation of the current ju→bðhÞ,

we assume that kþðlu ¼ α=2; lbÞ ≫ kþðlu > α=2; lbÞ; i.e.,
the microscopic rate for jumping in the binding pocket from
the edge of the pocket is dominating all others, which is
reasonable for steep harmonic potentials (stiff receptors).
This leads to the assumption that only the path from
position α=2 in the state u to the state b contributes to
the integral. We therefore set kþðlu; lbÞ ¼ δðlu − α=2Þκþ ×
ðlu; lbÞ (with Dirac delta δ) in Eq. (6) to find

jðhÞ ¼ pðα=2Þ
Z

α=2

−α=2
dlbκþðα=2; lbÞ: ð7Þ

Furthermore, we assume that the rate κþðlu ¼ α=2; lbÞ
for jumping from α=2 to anywhere in the pocket is
approximately constant, that is, κþðlu ¼ α=2; lbÞ ¼ k0,∀ lb, where k0 denotes some constant intrinsic rate. This
is valid under the assumption that the binding pocket is
small (typically a few angstroms) relative to the length scale
of the receptor fluctuations (typically nanometers), which
formally reads as α ≪

ffiffiffiffiffiffiffi
2=λ

p
. With this assumption, Eq. (7)

becomes

jðhÞ ¼ pðα=2Þk0α: ð8Þ

Finally, by combining Eqs. (1)–(5) and (8), we find the
h-dependent rates

konðhÞ ¼
k0α

ffiffiffiffi
2λ
π

q
exp ½− λ

2
ðh − l0 − α=2Þ2�

erf½ ffiffiffiffiffiffiffi
λ=2

p
l0� þ erf½ ffiffiffiffiffiffiffi

λ=2
p ðh − l0Þ�

;

koffðhÞ ¼ k0 exp

�
−ϵb þ

α

2

�
λ

�
h − l0 −

α

4

���
: ð9Þ

We note that a comparable expression for the binding rate
was derived previously [60]. However, in that work, the
unbinding rate was described independently with the Bell
model, without constraining the rates to satisfy detailed
balance. By assuming that the receptor fluctuation ampli-
tude is small compared to the receptor size (

ffiffiffiffiffiffiffi
2=λ

p
≪ l0 →

erf½l0
ffiffiffiffiffiffiffi
λ=2

p � ≈ 1) and compared to the distance between the
receptor rest position and the target (

ffiffiffiffiffiffiffi
2=λ

p
≪ h − l0 →

erf½ðh − l0Þ
ffiffiffiffiffiffiffi
λ=2

p � ≈ 1), the binding rate is further simpli-
fied, leading to

konðhÞ ¼ k0

ffiffiffiffiffiffiffi
λα2

2π

r
exp

�
−
λ

2

�
h − l0 −

α

2

�
2
�
; ð10Þ

koffðhÞ ¼ k0 exp

�
−ϵb þ

α

2

�
λ

�
h − l0 −

α

4

���
: ð11Þ

Note that almost identical rates (up to a factor) were
introduced in previous works [18,21,32] by physical
reasoning but without formal derivation provided herein
offering the exact criteria for the quality of these expres-
sions. In short, the presented rates hold for stiff receptors
(

ffiffiffiffiffiffiffi
1=λ

p
≪ l0) and small binding pockets (α ≪

ffiffiffiffiffiffiffi
1=λ

p
).

To give a physical interpretation of Eqs. (10) and (11), it
is instructive to cast the rates in the following form:

konðhÞ ¼ k0 exp ½Δσbu −Wujb
hui�; ð12Þ

koffðhÞ ¼ k0 exp ½−ϵb −Wujb
hbi�; ð13Þ

where Δσbu ¼ σb − σu ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλα2=2πkBTÞ

p
is the entropic

cost of restricting spring fluctuations to the binding pocket
of width α, as also argued in recent work [32]. Furthermore,

Wujb
hui is the work done against the spring force fðlÞ ¼

λ(l − ðh − l0Þ) to stretch the receptor from its mean
unbound position at hui ¼ h − l0 to the edge of the binding
pocket ujb ¼ α=2,

Wujb
hui ¼

Z
ujb

hui
dlfðlÞ ¼

Z
α=2

h−l0
dlλ(l − ðh − l0Þ)

¼ λ

2

�
h − l0 −

α

2

�
2

; ð14Þ

and Wujb
hbi is the work done by the spring force on the path

from the bound-state mean position in the absence of
the force hbi ¼ 0 to the edge of the binding pocket
ujb ¼ α=2,

JOSIP AUGUSTIN JANEŠ et al. PHYS. REV. X 12, 031030 (2022)

031030-6



Wujb
hbi ¼

Z
ujb

hbi
dlfðlÞ ¼

Z
α=2

0

dlλ(l − ðh − l0Þ)

¼ −
α

2
λ

�
h − l0 −

α

4

�
: ð15Þ

The kon rate depends exponentially on the work Wujb
hui

needed to stretch the receptor from its mean unbound
position at h − l0 to the edge of the binding pocket
ujb ¼ α=2, consistently with the phenomenological argu-
ment of Dembo [31]. As a result of the quadratic depend-
ence in the exponent, the binding rate is highly sensitive to
variations in target-membrane distance and receptor

stiffness λ, spanning orders of magnitude for small varia-
tions in these parameters [Fig. 4(a)].
The unbinding rate koffðhÞ [Eq. (11)] depends exponen-

tially on the binding pocket depth ϵb, diminished by thework

Wujb
hbi done by the spring force on the path from the bound-

state mean position in the absence of the force hbi ¼ 0
to the edge of the binding pocket ujb ¼ α=2. By writing

Wujb
hbi ¼ −γhfðhÞi, with γ ¼ α=2, we can interpret the

unbinding rate koffðhÞ as depending exponentially on the
product of the average force hfðhÞi ¼ (

R l2
l1
dlfðl; hÞ)=

ðl1 − l2Þ applied to the bond and a characteristic length γ
of the bound-state microstructure, reproducing Bell’s origi-
nal assumption [29]

koffðhÞ ¼ k0 exp ½−ϵb þ γhfðhÞi�: ð16Þ

Bell reasoned that γ should be approximately the (half-)
width of the binding pocket, which in our model is α=2 and
is exactly what we reproduced in Eq. (11). Note that the
exact expression for the average force hfðhÞi depends on
the arbitrarily chosen position of the binding pocket (for
example, it would be different for a binding pocket defined
on ½−α; 0� instead of ½−α=2; α=2�), while the length γ
depends only on the width and not the position of the
pocket. Similarly, for the binding rate, the entropic term
Δσbu depends only on the binding pocket width, while the

exact expression for the deformation energy Wujb
hui depends

on the pocket position. Because of the linear dependence of
the unbinding rate exponent on h, koffðhÞ shows much less
sensitivity to the separation from the target than the binding
rate [Fig. 4(b)]. Notably, the intrinsic affinity ϵb appears
only in the unbinding rate and does not enter the bind-
ing rate.
Variations of the Bell-Dembo rates in Eqs. (10) and (11)

have often been used to fit the lifetime-force curves obtained
from single-molecule force spectroscopy (SMFS) experi-
ments, which enables determination of rate parameters, such
as k0 [43,63,64]. For example, by fitting Eq. (16) to lifetime-
force data for a biotin-streptavidin bond, it is estimated that
exp½ϵb�=k0 ¼ 50 hours [63]. For biotin-streptavidin, ϵb ≈
35kBT [56], resulting in the estimate k0 ≈ 8 × 109 s−1.
Based on the measurements of receptor-ligand binding rates
in Ref. [20], we expect that typical adhesionmolecules, such
as integrins, have 2- to 4-orders-of-magnitude smaller k0 than
the biotin-streptavidin bond.
As a consistency check, we show that the ratio of rates

satisfies a new detailed balance,

konðhÞ
koffðhÞ

¼ exp ½−Whbi
hui þ ϵb þ Δσbu� ð17Þ

¼ exp

"
−
λ

2
ðh − l0Þ2 þ ϵb þ ln

ffiffiffiffiffiffiffi
λα2

2π

r #
; ð18Þ

FIG. 4. Bell-like rates as a function of the distance between
the ligand and the receptor for three different values of re-
ceptor stiffness λ. (a) Binding rate konðhÞ, given by Eq. (10)
(b) Unbinding rate koffðhÞ given by Eq. (11). The width of the
binding pocket is taken to be α ¼ 0.2 nm in both figures. The
intrinsic binding affinity (depth of the potential well) is set to
ϵb ¼ 10 ðkBTÞ, as typical binding energies are within this range,
e.g., 2 kBT for E-cadherin interactions [61] and 35 kBT for the
biotin-streptavidin, which is the strongest bond found in nature
[56]. Values for the receptor spring constants λwere motivated by
prior work [62]. The intrinsic rate k0 serves as an unspecified unit
for the rates.
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where the first term in the exponent on the right-hand

side of Eq. (18) isWhbi
hui ¼ Wujb

hui −Wujb
hbi ¼ Wujb

hui þWhbi
ujb, the

work needed to stretch the receptor spring from the mean
unbound (hui ¼ h − l0) state to the mean bound state
(hbi ¼ 0), stored in the elastic energy of the system. The
second term is the intrinsic affinity ϵb, while the third term
is the entropy cost associated with the suppression of the
structural receptor fluctuations in the bound state [32]. As
argued previously, the entropic term is necessary for a
consistent mapping of the continuous configurational space
to a coarse-grained space with two states (bound and
unbound).

IV. COARSE-GRAINED RATES—THE EFFECT OF
STEADY-STATE MEMBRANE FLUCTUATIONS

A. General integrative approach

As already discussed in Sec. II, the rates for a fixed
target-membrane separation h do not give an accurate
estimate of the timescale on which the ligand-receptor
(un)binding actually occurs in the context of cell adhesion.
Namely, fast membrane fluctuations often explore a range
of different h before a single ligand-receptor (un)binding
event occurs. Hence, estimating the timescale of ligand-
receptor (un)binding in the context of cell adhesion by
using rates [Eqs. (10) and (11)] for a specific h value will
have poor accuracy. Instead, the observed separation of
timescales between the ligand-receptor (un)binding and
membrane fluctuations (τon=off > τmembrane) allows us to
assume that the membrane explores all available heights h
[between the (un)binding events] and converges to a time-
independent distribution [between the (un)binding events].
Actually, two h distributions are necessary—one for the

unbound state [pmem
u ðhÞ] and one for the bound membrane

[pmem
b ðhÞ] [18,32]. This is because the fluctuations in the

membrane will be suppressed by the presence of the bond
itself [55,65].
This enables us to calculate the effective rate Kon=off as

an expected value of the h-dependent rates kon=offðhÞ which
quantify the timescale of the (un)binding events for the
(fictive) case in which the membrane height is permanently
at height h,

Kon ¼
Z

dhkonðhÞpmem
u ðhÞ; ð19Þ

Koff ¼
Z

dhkoffðhÞpmem
b ðhÞ: ð20Þ

Therefore, the assumption is that kon=offðhÞ contributes to
the effective rate Kon=off proportionally to the time the
membrane spends at the height h.
These so-called CG rates depend only on the mechanical

properties of the membrane-receptor system and the energy
profile of the ligand-receptor interaction.

The above equations are general, in the sense that they
hold for any time-independent h distributions. Two impor-
tant classes of such distributions found in experiments are
the equilibrium states (ES), for which the membrane is
driven by purely thermal processes, and nonequilibrium
steady states (NESS), which are generated in part by
athermal biochemical processes requiring energy expendi-
ture and, consequently, breaking the fluctuation-dissipation
theorem [8]. Accordingly, it is not possible to distinguish
an ES from a NESS based purely on the fluctuation
measurements.
In the following section, we explore Gaussian dis-

tributions, which are important types of both ES and
NESS h distributions. Because of their analytical trac-
tability, Gaussian h distributions have already been
extensively studied in the context of CG ligand-receptor
rates [18,21,32]. After that, we examine a more general
case of non-Gaussian distributions, inspired by the mea-
surements of NESS fluctuations in HMs and RBCs. We
exploit similarities in their NESS spectra to construct
a single model for their fluctuations and then use
Eqs. (19) and (20) to compare the two cases and analyze
the consequences of non-Gaussianity for ligand-receptor
interaction rates.
However, we should distinguish between the timescales

of fast membrane fluctuations that we average into a time-
independent distribution on intermediate timescales, and
the much slower remodeling of the cell membrane, which
changes its average shape and the fluctuation spectrum. As
discussed previously, our approach assumes a quasistatic
mean shape of the membrane and the fluctuation spectrum.
Thus, to accurately apply our rate formulation in cell
adhesion, the coarse-grained rates should be continuously
updated, with the frequency of recalculation determined by
the timescale of the remodeling.

B. Gaussian fluctuations: Thermal vs active systems

A Gaussian distribution of the membrane position h,
with fluctuation amplitude

ffiffiffiffiffiffiffiffiffiffi
1=λG

p
and mean position h0, is

given by

pG
u ðhÞ ¼

ffiffiffiffiffiffi
λG
2π

r
exp

�
−
λG
2
ðh − h0Þ2

�
: ð21Þ

Note that in the ES case, the fluctuation amplitude
ffiffiffiffiffiffiffiffiffiffi
1=λG

p
depends on the membrane elastic properties, but it is
independent of membrane deformation [65]. On the other
hand, a membrane in an ES pinned by a linear spring with
stiffness λ and rest length l0 (see Fig. 5) has the following
Gaussian distribution at the pinning site [65]:

pG
b ðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ λG
2π

r
exp

�
−
λþ λG

2
ðh − hbÞ2

�
; ð22Þ
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with the mean position

hb ¼
λGh0 þ λl0
λG þ λ

ð23Þ

and fluctuation amplitude 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλþ λGÞ

p
.

We obtain the Gaussian CG rates according to Eqs. (19)
and (20) by convolving the h-dependent reaction rates
[Eqs. (10) and (11)] with the respective h distributions
[Eqs. (21) and (22)], and we find

KG
on ¼ k0

ffiffiffiffiffiffiffiffiffiffiffi
ΛGα

2

2π

r
exp

�
−
ΛG

2

�
h0 − l0 −

α

2

�
2
�
; ð24Þ

KG
off ¼ k0 exp

�
−ϵb þ

α

2

�
ΛG

�
h0 − l0 −

α

4

���
; ð25Þ

where ΛG ¼ λλG=ðλþ λGÞ is the stiffness of the spring
constructed by combining the membrane and receptor
springs in series [21]. Remarkably, we can see from
Eqs. (24) and (25) that the CG rates have exactly the same
form as the Bell-like h-dependent rates [Eqs. (10) and (11)],
with substitutions h → h0 and λ → ΛG.
In the limit of a very stiff membrane (λG → ∞), the

system is governed by the receptor flexibility (ΛG → λ),
while in the limit of a very stiff receptor (λ → ∞), the
system is governed by the membrane flexibility (ΛG → λG).
We can therefore map the membrane-receptor system to a
simpler system consisting of a single, effective spring of
stiffness ΛG with rest length at l ¼ h0 − l0, which binds
and unbinds with Bell-like rates KG

on and KG
off from a

binding pocket at l ¼ 0 [18].
The interpretation of the CG rates is similar: KG

on is
proportional to the entropic cost of restraining both
membrane and receptor fluctuations, and it depends expo-
nentially on the energy needed to stretch the effective
spring (membraneþ receptor) to the edge of the binding
pocket; Koff depends exponentially on the work done
across the half-width of the pocket due to the deformation
force of the effective spring (membraneþ receptor). CG

rates inherit all of the properties discussed for the h-
dependent Bell-like rates. Namely, the Kon rate is very
sensitive to the changes in membrane fluctuations (through
h0 and ΛG).
On the other hand, the Koff rate is less responsive. The

reason behind this behavior comes from the fact that the
exponent of KG

on is quadratic in h0 while the exponent of
KG

off is linear in h0. This was also shown in previous works
[18,21,32], where Gaussian h distributions were used to
calculate the CG rates Kon and Koff . This previous work
validated the concept of effective reaction rates in the
context of cell adhesion simulations by directly comparing
the predictions of the CG approach with the higher-level
simulation scheme that explicitly simulates the membrane
fluctuations [32].
Finally, the detailed balance also holds on the level of a

single bond and has the same form as Eq. (18), namely,

KG
on

KG
off

¼ exp

"
−
ΛG

2
ðh0 − l0Þ2 þ ϵb þ ln

ffiffiffiffiffiffiffiffiffiffiffi
ΛGα

2

2π

r #
: ð26Þ

The first term is due to elastic deformation of both the
membrane and the receptor, the second term accounts for
the intrinsic binding affinity, and the third term is the
entropic cost of confining both membrane and receptor
fluctuations to the binding pocket. The advantage of these
rates is that they naturally coarse grain the dynamics of the
receptor and the membrane while accurately resolving
receptor-ligand reversible binding rates.
This formalism applies to ES but may also hold in a

number of situations for a membrane exhibiting NESS
Gaussian fluctuations. The condition is that the formation
of the bond does not disturb the athermal processes that are
driving the Gaussian NESS, on the timescale of unbinding.
This is satisfied in many biological conditions; however, if
not, (22) can still be safely calculated, while for the
unbinding, the spectrum will need to be reevaluated.

C. Non-Gaussian active fluctuations
and asymmetric environments

With contributions from active processes, the membrane
fluctuation spectrum often delineates from a Gaussian
distribution. This may have interesting consequences on
the receptor-ligand (un)binding dynamics. We demonstrate
this for non-Gaussian fluctuations that were experimentally
measured on human macrophages [23] before and after the
cell was stimulated (“primed”) with the cytokine IFNγ.
Among other effects, IFNγ increases actin polymeriza-
tion and membrane ruffling through the interplay with the
membrane bound activators [26]. As a result of these
nonequilibrium fluctuations, stronger excursions of the
membrane are more common (Fig. 6), as can be seen by
comparing the normalized spectra of activated (blue) and
nonactivated (red) cells (see inset). Consequently, the

FIG. 5. Spring model of the interaction between a ligand and a
receptor confined to a Gaussian membrane. The membrane is
represented by a harmonic spring, with the rest position at h0. The
receptor is represented by a harmonic spring of stiffness λ and rest
length l0, which is coupled in series with the membrane spring.
The ligand is represented by the red shape.
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activation fattens the tails and lowers the peak of the NESS
displacement distributions (see inset in Fig. 6).
Further analysis of these data shows that without IFNγ

stimulation, the NESS displacements are slightly deviating
from a Gaussian distribution (skewness S ¼ −0.09 and ex-
cess kurtosis K ¼ 0.51). Here, we use S ¼ E½(ðx − μÞ=σ)3�
as a measure of the skewness and excess kurtosis K ¼
E½(ðx − μÞ=σ)4� − 3 of the total distribution, withE½x� being
the expected value, μ the mean, and σ the standard deviation
of the probability distribution. After IFNγ stimulation, the
spectra are deviating more strongly from a Gaussian (skew-
ness S ¼ −0.43 and kurtosis K ¼ 2.05). An increase in
negative skewness indicates that activation increases asym-
metry of the fluctuations by extending the tail for negative δh
(towards the cell exterior) more than for positive δh (towards
the cell interior), hinting at the asymmetry between the
interior and the exteriormembrane environments. To account
for this effect, both the IFNγ-activated and the nonactivated
measured distributions are fitted (Fig. 6) by

pGL
u ðh − h0Þ ¼

1

ZGL
u

n
exp

h
−
�λG−

2
ðh − h0Þ2

þ
ffiffiffiffiffiffiffi
λL−

p
jh − h0j

�i
Θðh0 − hÞ

þ exp
h
−
�λGþ

2
ðh − h0Þ2 þ

ffiffiffiffiffiffiffi
λLþ

p
jh − h0j

�i
× Θðh − h0Þ

o
: ð27Þ

Here, λGþ and λLþ parametrize the Gaussian and Laplace
distributed fluctuations toward the interior of the cell,
respectively, as indicated by the Heaviside Θ function
(positive δh ¼ h − h0). Equivalently, λG− and λL− account
for the fluctuations toward the exterior of the cell (negative
δh ¼ h − h0). Finally, ZGL

u was taken as a free parameter in
the fit; however, to convert the unnormalized fit to a proper
probability distribution for further calculations, we take ZGL

u
to be the normalizing factor,

ZGL
u ¼

ffiffiffiffiffiffiffiffiffiffi
π

2λG−

r
exp

�
λL−

2λG−

�
erfc

" ffiffiffiffiffiffiffiffiffiffi
λL−

2λG−

s #

þ
ffiffiffiffiffiffiffiffiffiffi
π

2λGþ

r
exp

�
λLþ

2λGþ

�
erfc

" ffiffiffiffiffiffiffiffiffiffi
λLþ

2λGþ

s #
: ð28Þ

The normalized distributions are plotted in the inset of Fig. 6.
For λL� → 0 and λGþ ≠ λG− , Eq. (27) reduces to an

asymmetric Gaussian distribution, while for λG� → 0 and
λLþ ≠ λL− , it reduces to an asymmetric Laplace distribu-
tion. At this stage, this form of the distribution does not
imply the thermal or active nature of the (non-)Gaussian
components, but it implies that membrane environments in
the interior and the exterior are distinctively different. In the
case that this is not true, it can be simply circumvented by
setting λG− ¼ λGþ and λL− ¼ λLþ , in which case, the usual
symmetric distributions emerge.
One can understand the above distribution as the

Boltzmann probability of an effective potential Veff
u� ¼

λG�=2ðh − h0Þ2 þ
ffiffiffiffiffiffiffi
λL�

p jh − h0j. Obviously, the potential
Veff
u� has an intuitive representation in the form of a parallel

connection of a harmonic spring with stiffness λG� and a
linear spring with stiffness

ffiffiffiffiffiffiffi
λL�

p
. This system of springs

will then be attached in series to a receptor (spring constant
λ) as shown in Fig. 7. Under these circumstances, the

FIG. 6. Measurements of the change in stochastic displace-
ments of a macrophage membrane in response to stimulation by
the cytokine IFNγ. Membrane fluctuations of adhered macro-
phages were measured with dynamic optical displacement
spectroscopy (DODS) [23]. Details about the preparation of
macrophages and DODS can be found in Ref. [23]. Two
distributions correspond to IFNγ-stimulated (red dots) and resting
macrophages (blue dots). Lines are theoretical fits obtained using
Eq. (27). Inset: probability distributions derived from the un-
normalized fitted curves.

FIG. 7. Schematic representation of the mechanical model
for binding rates of a ligand and receptor confined to an active
membrane. The model consists of three coupled springs. The
membrane is represented by two parallel springs: one harmonic
[deformation energy quadratic in extension, λGðh − h0Þ2] and
the other linear [deformation energy linear in extension,ffiffiffiffiffi
λL

p jh − h0j], with the rest position of both springs at h0. The
receptor is represented by a harmonic spring of stiffness λ and rest
length l0, which is coupled in series with the parallel membrane
springs.
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normalizing factor ZGL
u given in Eq. (28) can be interpreted

as a partition function of the membrane-receptor coupled-
springs system shown in Fig. 7.
Centering the data and applying Eq. (27) to the spectra

of nonactivated macrophages in Fig. 6 yields parameter
estimates λG− ¼1.5×10−4 nm−2 and λL− ¼8.2×10−5 nm−2

in the exterior, and λGþ ¼ 1.9 × 10−4 nm−2 and λLþ ¼
5.2 × 10−5 nm−2 at the cell interior. The measurements
on activated cells provide the values for the extracellular
side λG− ¼ 4.1 × 10−6 nm−2 and λL− ¼ 1.1 × 10−4 nm−2,
while on the cytoplasm side, one obtains λGþ ¼ 2.8 ×
10−6 nm−2 and λLþ ¼ 7.9 × 10−4 nm−2. Cell activation
clearly decreases λG� and increases λL� , confirming the
strengthening of Laplace distributed fluctuations.
Interestingly, the Laplace component is significant even

in the nonactivated cells, and the Gaussian component
shows a notable level of asymmetry. While this finding can
be interpreted as an indication that active fluctuations exist
even in nonactivated macrophages, it is not a rigorous proof
of the nonequilibrium state of these cells. However, given
that these macrophages still consume energy, active com-
ponents in the fluctuation spectrum of resting macrophages
would not come as a surprise. Opposite to the finding in
resting cells, in activated cells the Gaussian component has
a smaller reach toward the extracellular space compared to
that toward the cytosol, while the range of the Laplace
fluctuations increases. These trends may have important
consequences for the kinetics of receptors on the membrane
surface.
Finally, we note that the same model has been success-

fully used to fit the active fluctuations of the RBCs (see
Appendix A). RBCs and HMs have a very different
molecular structure and activation mechanisms, yet the
same trends in the relationship between cellular activity and
membrane fluctuations are found. The presented Gauss-
Laplace model is shown to correctly capture the main
consequences of the cell activation on the membrane
fluctuations for both cell types. Moreover, while RBCs
do not adhere to the extracellular space, their membrane
exhibits characteristic on/off coupling of the membrane-
embedded glycophorin with protein 4.1 of the intracellular
spectrin network on the interior of the cell [28]. This is an
adenosine triphosphate (ATP) dependent process, which
may contribute to and couple with fluctuations. Therefore,
we believe that the data on the RBC cell not only point to
the similarities of fluctuation spectra in very different cell
lines, but future models for the membrane-spectrin inter-
action may consider the coarse-graining concepts pre-
sented here.

1. Coarse-grained binding rate

We now turn to the consequences of the activated
membrane fluctuations on the ligand-receptor binding
and unbinding rates. Because the characteristic timescales

associated with the majority of active and thermal fluc-
tuation modes are orders of magnitudes smaller than the
timescale of ligand-receptor un(binding) [8,23] (see dis-
cussion in Sec. II), the averaging of Bell-like rates can be
performed according to Eq. (19) using Eq. (27) to obtain
the CG rate KGL

on . Accordingly, inserting the h distribution
pGL
u ðhÞ into Eq. (19), we find, in the limit of a stiff receptor

(λ ≫ λG� ; λL� and
ffiffiffiffiffiffiffi
2=λ

p
≪ jh0 − l0j) (see Appendix B. 1),

KGL
on ≈

k0α
ZGL
u

	
exp

�
−h2α

λG−

2
− hα

ffiffiffiffiffiffiffi
λL−

p �
Θ½h0 − l0�

þ exp

�
−h2α

λGþ

2
þ hα

ffiffiffiffiffiffiffi
λLþ

p �
Θ½l0 − h0�



; ð29Þ

where hα ¼ h0 − l0 − α=2. The above approximation is
expected to be valid for most biological situations
(λ ∼ 10−2 nm−2 compared to λG� , λL� ∼ 10−6–10−3 nm−2

from the above experimental fit). Note that h0 − l0 is defined
as the relative position of the receptor tip with respect to the
target-ligand positioned at the origin of the coordinate
system and can therefore be positive or negative (see
Fig. 7 for an example of positive h0−l0>0). Equation (29)
therefore tells us that the relative positioning of the mem-
brane and the target ligand (the sign of h0 − l0) determines
the side of the fluctuation spectrum that contributes to the
ligand-receptor binding rate. If the target ligand is in the cell
exterior (h0 − l0 > 0), the extracellular (negative) side of the
spectrum will dominate interactions, while the intracellular
(positive) sidewill contribute if the target ligand is in the cell
interior (h0 − l0 < 0), as expected. Naturally, KGL

on reduces
to the symmetric Gaussian rate KG

on [Eq. (24) in the regime
λ ≫ λG] for λG− ¼ λGþ and λL� → 0.
In this picture, KGL

on [Eq. (29)] depends exponentially on
the effective energy needed to stretch bothmembrane springs
to the edge of the binding pocket. Furthermore, it depends on
the entropic cost ln ½α=ZGL

u � of restraining fluctuations of
both membrane springs, with partition function ZGL

u , to the
binding pocket of width α. We have therefore derived a
generalized version of the binding rate for active systems in
which the membrane fluctuations are exponentially and/or
Gauss distributed. This result again inherits all of the main
properties discussed for the h-dependent Bell-like binding
rates. Namely, theKGL

on rate is very sensitive to the changes in
membrane fluctuations, which can modify the binding rate
by orders of magnitude [Fig. 8(a)].
This sensitivity of rates becomes evident on the example

of activated macrophages. Using the values of the mem-
brane spring constants obtained from the fitted spectra, we
test its effects on the binding rates in our model. We find
that the binding rate decreases with increasing ligand-
receptor distance jh0 − l0j, as expected. However, this
decrease is much slower in the activated cells (blue
lines in Fig. 8), compared to resting cells (red lines).
The activation is thus reflected in the significantly extended
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binding range. While the resting HM cell can realistically
interact with receptors at a distance of about 250 nm, in
activated cells this range is nearly doubled. This is presum-
ably crucial in terms of the macrophage function. Further-
more, we notice that the asymmetry in fluctuations induces
an asymmetry in rates. If the fluctuations involve binding to
intracellular or extracellular targets, the rates for binding to
intracellular targets (dashed lines) are consistently smaller
than the rate for binding to extracellular targets (solid lines),
and the range is about 50 nm less on the interior side,which is
reasonable given the confinement of the cell.
These interesting properties fully emerge from the proper-

ties of the spectra. The form and the numerical values of the
binding rate given in Eq. (29) are in noway dependent on the
properties of the steady state. The result should be applicable
as long as the Bell-Dembo rates can be considered, and the
separation of timescales between the fluctuations of the
membrane and the binding is still applicable.
The effect of membrane fluctuations on the binding rates

can further be highlighted by a comparison with the case in
which both the ligand and the receptor are anchored to
immobile surfaces. Namely, receptor flexibility admits the
receptor to explore the surrounding space only locally (about
10 nm),whereasmembrane fluctuations can have amplitudes
of about 100 nm. Consequently, in the absence of membrane
fluctuations, the magnitude of the binding rate decreases
by orders of magnitude (from 10−2k0 to 10−12k0) over just
30-nm distances (Fig. 4), whereas the presence of membrane
fluctuations extends the comparable decrease of the binding
rate over several hundreds of nm [Fig. 8(a)].

2. Coarse-grained unbinding rate

The formation of a bond typically affects the membrane
height distribution pGL

u ðhÞ, as it locally constrains the

membrane movement. In order to calculate the coarse-
grained unbinding rate KGL

off , the height distribution func-
tion of a bound membrane is required. If we assume that the
bond behaves as a thermalized elastic spring and that the
fluctuations of the membrane can be represented by a
convolution of Gauss and Laplace distributed displace-
ments, the NESS distribution pGL

b ðhÞ for the position h of a
bound membrane can be written as

pGL
b ðh − h0Þ

¼ 1

ZGL
b

exp
�
−
λ

2
ðh − l0Þ2

�

× exp

�
−
�
λG−

2
ðh − h0Þ2 þ

ffiffiffiffiffiffiffi
λL−

p
jh − h0j

�
Θðh0 − hÞ

�

× exp

�
−
�
λGþ

2
ðh − h0Þ2 þ

ffiffiffiffiffiffiffi
λLþ

p
jh − h0j

�
Θðh − h0Þ

�
:

ð30Þ
In Eq. (30), we modeled the bond by a harmonic potential
of stiffness λ and rest length l0 as shown in Fig. 7, while
ZGL
b is the normalization constant.
To obtain the CG unbinding rate KGL

off , we insert the h
distribution in Eq. (30) into Eq. (20), and in the stiff
receptor limit, we find (see Appendix B. 2)

KGL
off ≈ k0 exp

�
−ϵb þ

α

2
λG−

�
h0 − l0 −

α

4

�
þ α

2

ffiffiffiffiffiffiffi
λL−

p �
× Θ½h0 − l0�

þ k0 exp

�
−ϵb þ

α

2
λGþ

�
h0 − l0 −

α

4

�
−
α

2

ffiffiffiffiffiffiffi
λLþ

p �
× Θ½l0 − h0�: ð31Þ

FIG. 8. Coarse-grained model for the ligand-receptor complexation in active (blue) and resting (red) macrophages as a function of the
separation between the cell membrane and the target h0 − l0 on the extracellular (solid lines) and intracellular sides (dashed lines).
(a) Binding rate KGL

on [Eq. (29)] is increased for orders of magnitude with activation, while the intracellular KGL
on is consistently smaller

than the extracellular KGL
on . (b) The unbinding rate KGL

off [Eq. (31)] decreases with activation, but the effect is only small. Nonetheless, the
intracellular KGL

off is systematically larger than the extracellular KGL
off . (c) The effective affinity ln½KGL

on =KGL
on � increases drastically with

activation, and the decay in the bond stability as a function of the distance from the target is significantly slower in activated cells
compared to resting cells, with the range of extracellular affinity being larger than the intracellular one. We use the parameters
α ¼ 0.5 nm and ϵb ¼ 10. The values for λG� and λL� are taken from the experimental fits shown in Fig. 6. The intrinsic rate k0 serves as
an unspecified unit for the rates.
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Notably, the normalization constant drops out in this limit.
Each theta function accounts for relative positioning of the
membrane and the target ligand, with the sign of h0 − l0
determining if the bond is formed toward the interior or the
exterior of the cell. The unbinding rate KGL

off reduces to
the symmetric Gaussian rate KG

off [Eq. (25) in the regime
λ ≫ λG] for λG− ¼ λGþ and λL� → 0.
The calculated KGL

off are shown in Fig. 8(b) as a function
of the relative positioning between the target ligand and the
membrane receptor (jh0 − l0j), for the case of macrophages.
We find that, compared to the resting cells (red), the
unbinding rates in activated cells are only slightly smaller,
despite large changes in the spectra.
The interpretation of the rate given in Eq. (31) is

analogous to the purely Gaussian case. Namely, KGL
off

depends exponentially on the work done across the half-
width of the pocket due to the deformation force of both
membrane springs (the force linear in extension is due to
the harmonic spring, and the constant force is due to the
linear spring). Note that the negative and positive sides of
the rate are related through h0 − l0 → −ðh0 − l0Þ and,
importantly, α → −α, where the sign in front of α indicates
the orientation of the path over which the work is done
(½0; α=2� for h0 − l0 > 0 and ½0;−α=2� for h0 − l0 < 0).
Hence, Eq. (31) represents a generalized version of the
Bell-like unbinding rate. Moreover, this result follows from
a very general assumption on the form of the probability
distribution of a bound membrane [Eq. (30)] and the
h-dependent rate koffðhÞ [Eq. (11)] and is therefore inde-
pendent of the microscopic details and whether the recep-
tor-membrane system is equilibrated or not.
As can be seen in Figs. 8(a) and 8(b), KGL

off is insensitive
to the changes in membrane fluctuations compared to the
KGL

on rate. The reason behind this behavior comes from
the fact that the leading term in the exponent of KGL

on is
quadratic in membrane deformation, while the leading term
in the exponent of KGL

off is linear in deformation. This is
remarkable since it follows that the Bell-like dependence of
the unbinding rate on the load on the bond is present even in
the effective picture, where the coarse graining is done over
non-Gaussian fluctuations. This establishes a simple and
unified framework for the investigation of the transmem-
brane receptor-ligand interactions.
In the context of macrophages, we see that the unbinding

rate in activated cells (blue curves) is smaller compared to
the rate in resting cells (red curves). In both cases, KGL

off
almost linearly increases by increasing the separation
between the cell and the target, with the unbinding on
the intracellular side being somewhat more intense than on
the extracellular side.
In some systems, it will be possible to furthermore

assume that, upon binding, the time-independent mem-
brane fluctuation distribution is established on the time-
scale of the bond lifetime, as it was in the case of thermal
fluctuations. This is often a reasonable assumption since

the characteristic athermal fluctuation modes seem to be
fast [8] compared to the lifetime of a bond [23]. If the
ligand-receptor bond does not affect the internal structure
of the membrane, nor the athermal processes that sustain
the NESS, then the bond only mechanically constrains the
movement of the membrane. In this case, the normaliza-
tion constant in Eq. (30) can be interpreted as a partition
function for the bound state. Moreover, the probability
distribution of the membrane in the bound state is related
to that in the unbound state such that in the limit of a
very flexible receptor λ → 0, the fluctuations are assumed
to converge to the unbound membrane distribution
pGL
b ðh; λ ¼ 0Þ ¼ pGL

u ðhÞ. Under these circumstances,
detailed balance applies on the level of the single bond.
Even for these types of active systems, however,
having more than one bond will result in the breakdown
of the detailed balance due to the membrane-mediated
correlations [32].

3. Effective affinity for the receptor-ligand complexation
in active membranes

The receptor-ligand affinity is given by the log ratio of
the non-Gaussian binding and unbinding CG rates
[Eqs. (29) and (31)]

ln
KGL

on

KGL
off

¼
�
ϵb −

λG−

2
ðh0 − l0Þ2 −

ffiffiffiffiffiffiffi
λL−

p
ðh0 − l0Þ

þ ln
α

ZGL
u

�
Θ½h0 − l0�

þ
�
ϵb −

λGþ

2
ðh0 − l0Þ2 þ

ffiffiffiffiffiffiffi
λLþ

p
ðh0 − l0Þ

þ ln
α

ZGL
u

�
Θ½l0 − h0�: ð32Þ

The theta function terms again pick out the relevant side of
the spectrum depending on the relative positioning of the
target ligand and the membrane. The above non-Gaussian
affinity has a simple interpretation analogous to the
Gaussian case. Namely, the first term accounts for the
enthalpic change in energy due to binding, the second and
third are due to deformations of the membrane (represented
by parallel springs), and the fourth term is the entropic cost
of confining membrane fluctuations (represented by fluc-
tuations of parallel springs) to the binding pocket of width
α. In the special case of active systems that respect
Boltzmann statistics, this relation can also be associated
with the detailed balance condition.
If we apply this discussion to the physiologically

induced changes in macrophage membrane fluctuations,
we observe that fluctuations strongly affect the Kon=Koff
ratio, as Kon is much more sensitive to fluctuation changes
than Koff [Fig. 8(c)]. This suggests that the activity of the
cell may tune the affinity of receptors for their target.
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Furthermore, the effect is present for interactions with both
extracellular and intracellular structures, although it is more
pronounced for the extracellular case. Furthermore, IFNγ
activation extends the positive affinity to larger separations.
This means that stable bonds can be established at
separations that are 200 nm larger in the activated cells
compared to resting cells, which is a considerable effect. As
expected, the range of positive affinity is longer on the
extracellular side, as a consequence of larger Kon and
smaller Koff [Figs. 8(a) and 8(b)].
Hence, we predict that physiological changes in fluctua-

tions can induce significant changes in the ligand-receptor
binding dynamics and affinity. Based on that, we propose
that the avidity of the macrophage receptors can be
significantly modified, not only by changes in the receptor
expression rate but also by physiologically controlling
membrane fluctuations. Namely, the strengthening of
adhesiveness is typically associated with the increase in
receptor avidity, but the mechanisms for this increase are
still highly debated [66]. Suggested mechanisms include
cobinding, spatial distributions (which actually depend on
fluctuations), production of receptors, and enhanced signal-
ing, with probably more than one element contributing
at the same time [67,68]. However, the biological com-
munity has not yet considered contributions from changes
in membrane fluctuations. We hypothesize that this is a
general mechanism across different types of cells for
controlling the receptor-ligand-mediated membrane inter-
actions, which would, e.g., enable macrophages to more
effectively modify their phagocytic activity in the presence
of pathogens.
Hence, understanding the activity-adhesiveness relation

is an open problem and requires either decoupling of many
possible contributions or approaching the problem holis-
tically—starting from fluctuations themselves and not their
auxiliary source, as performed here.

V. DISCUSSION

The generalized rate formulation.—We have introduced
a systematic and unified framework for deriving and
interpreting the kinetics and affinity of the adhesive
receptor-ligand interactions in the context of both thermal
and active fluctuations. This framework takes into account
the physical properties of receptor-ligand bonds and the
mechanics of the membrane and receptor shape fluctua-
tions. Because of the characteristic timescales of these
processes, it correctly describes the system behavior over
several orders of magnitude on the temporal scale.
Moreover, the framework is agnostic about the underlying
mechanistic processes behind membrane activity and there-
fore on the exact types of cells under investigation (it
should be applicable even to biomimetic vesicles, whatever
the engineered mechanism of activity). This approach is
also closer to the experimentalist point of view, as it
explicitly considers only the observed fluctuation spectrum,

irrespective of its underlying driving mechanism, which is
usually out of experimental reach.
Starting from a simple, yet physically reasonable micro-

scopic model, we reproduced the qualitative behavior of
Bell-Dembo rates; namely, the binding rate depends expo-
nentially on the elastic energy needed to stretch the receptor
in order to access the binding site, while the unbinding rate
depends exponentially on the force exerted on the already-
formed bond. In other words, expressed in terms of work,
the binding rate depends exponentially on the work done by
an external force that is exerted on the spring to stretch it
from the spring rest length to the binding pocket, while the
unbinding rate depends exponentially on the work done by
the spring force on the path from the mean position in the
binding pocket to the edge of the binding pocket. This is a
general principle that can be used in modeling beyond the
system described in this paper.
While Bell-like rates are extremely popular in the life-

science community, they have so far been used with no
clear understanding of the limits in which they apply and
with no unambiguous interpretation of the normalization of
the Boltzmann factors that appear. Our work here gives a
clear interpretation of the latter and sets quantitative limits
to the applicability of these rates—namely, for small
binding pockets and stiff receptors, and when structural
fluctuations of the receptor are faster than the binding.
Furthermore, we give a more general expression, on the
same level of theory, for any receptor stiffness [Eq. (9)].
Extending on these microscopic rates, we have calcu-

lated the CG rates that integrate membrane fluctuations. We
reproduced the Gaussian rates and generalized them to the
non-Gaussian case by modeling the membrane and the
receptor system with an effective mechanical model. We
found that even the non-Gaussian CG rates can be cast in
the familiar Bell-like form. Consequently, we can define
binding Koff and unbinding Koff rates, which may explic-
itly or implicitly depend on the separation between the
membrane and the target h. These rates adopt the same
form on all scales, namely,

Kon ¼ k0 exp ½Δσbu −Wujb
hui �; ð33Þ

Koff ¼ k0 exp ½−ϵb −Wujb
hbi�: ð34Þ

Here, Wujb
hui is the work done to deform the membrane-

receptor construct from its (mean) unbound membrane-
receptor distance hui to bring the receptor to the edge of the
binding pocket ujb, while Wujb

hbi is the work done to deform
the membrane-receptor construct to bring the receptor from
the (mean) bound-state distance hbi (in the absence of the
force) to the edge of the binding pocket ujb. Additionally,
Δσbu ¼ σb − σu is the entropic cost of restricting receptor
fluctuations to the binding pocket. The only difference
between the rates in Eqs. (12) and (13), Eqs. (24) and (25),
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and Eqs. (29) and (31) is the mechanical model in question,
namely, a single spring (a receptor alone) in Eqs. (12) and
(13), two springs in series (a receptor and a Gaussian
membrane) in Eqs. (24) and (25), or a construct of three
springs (a receptor and a Gauss-Laplace membrane) in
Eqs. (29) and (31). Consequently, all systems have in
common that the target-membrane distance h enters the
binding rate quadratically and the unbinding rate linearly.
Our approach therefore provides a “scale-free” formu-

lation of rates. Importantly, the rates are given in terms of a
measurable, load-dependent work function. Furthermore,
the fact that such a work function can be formally derived
from first principles in nonequilibrium conditions is a
highly nontrivial result. Moreover, our framework indicates
a simple way to account for the effects of membrane
fluctuations even if their properties are not captured by the
Gauss-Laplace model by corresponding modifications in
the mechanical model of the receptor-membrane construct.
Hence, the derived unified framework for passive and
active fluctuations is a novel and positive result, which
was not a priori obvious.
Furthermore, the Gaussian limit of our framework is

already validated through the comparison of extensive
simulations and experiments, especially on many-body
processes such as adhesion [32]. Such investigations can
now be effortlessly generalized to the non-Gaussian case.
The degree of non-Gaussianity can be unambiguously
controlled by modifying the model parameters, enabling
systematic investigation of the non-Gaussianity effect.
Moreover, the model is applicable for a large class of
asymmetric non-Gaussian fluctuations that encompass
Gaussian and Laplace distributions.
Finally, the rate formulation proposed in this paper can

be applied in many different contexts, well beyond cell
adhesion—from single-molecule force spectroscopy (when
the ligands are attached to a fluctuating cantilever [69], or
with antibody-antigen interactions studied with optical
tweezers), in functional nanoparticle interactions during
targeted delivery or in self-assembly, as well as in active
soft-matter systems, just to name a few examples.
Beyond the single ligand-receptor pair.—Although the

approach discussed in this work is based on a single ligand-
receptor picture, our results already offer some insight into
the membrane-mediated interactions between two receptor-
ligand pairs. Namely, for Gaussian membrane fluctuations
the membrane-mediated interactions between two bonds
have been shown to be determined by the lateral correlation
function of the unbound membrane [65]. The latter has, in
turn, been shown to exhibit an exponential decay, with a
characteristic lateral correlation length ξG, in the asymp-
totic limit of large separations between bonds [65].
Additionally, the lateral correlation length ξG can be shown
to have a relatively simple relation to the fluctuation
amplitude 1=λG [70]. In general, larger fluctuation ampli-
tudes correspond to smaller lateral correlation lengths.

We expect that these general properties of the Gaussian
fluctuations will also hold for the Gauss-Laplace fluctua-
tions, with the caveat that the Gauss-Laplace membrane
will be characterized by two lateral correlation lengths—ξG
corresponding to the Gaussian contribution and ξL corre-
sponding to the Laplace contribution—with the correlation
length set by the larger of ξG and ξL.
With these assumptions, the experimental observation

that λG > λL before activation and λG < λL after activation
(see Sec. IV. C for exact values) translates into ξG < ξL
before activation and ξG > ξL after activation. Therefore,
the correlation length of the nonactivated macrophage
fluctuations is expected to be set by the slower decaying
Laplace contribution, while the correlation length for the
activated fluctuations is set by the Gaussian contribution.
Importantly, activation increases the correlation length, as
the measured λG after activation is smaller than the λL
before activation.
Hence, based on the above analysis of the single ligand-

receptor model coupled with experimental fluctuation
measurements, we expect that the activation will increase
the range of membrane-mediated interactions. Such an
effect can have important consequences for the clustering
of ligand-receptor bonds in the context of adhesion and is in
line with the hypothesis that membrane activity plays an
important role in such processes. Namely, the correlation
between activity and adhesiveness is an active field of study
[24,25,71], and there are hints in the literature that
fluctuations may indeed enhance adhesion. For example,
Sengupta et al. [72] observed the time-resolved dynamics
of spreading human neutrophils after activation by the
chemoattractant formyl methionyl leucyl phenylalanine by
reflection interference contrast microscopy. It was clearly
seen that the cells have a “waiting period” without any
visible adhesion or spreading before the chemoattractant
was introduced—they start adhering only after that.
Furthermore, immune cells have clearly shown the need
for some kind of active fluctuations to establish early
adhesion [73,74].
Of course, the discussion based on a single ligand-

receptor pair picture is a rough estimate, and for the full
treatment of the membrane-mediated interactions between
bonds, one would have to specify a dynamical model that
accounts for the activity. This would enable explicit
calculation of the two-point correlation function for the
active membrane and the investigation of the dependence of
the macroscopic adhesion dynamics on the concentration of
ligands and receptors, as was, for example, done in
Ref. [75] for purely thermal dynamics. However, as already
discussed, the specification of a dynamical model is a
nontrivial task. This makes the simplicity and generality of
the above analysis even more valuable. Moreover, any
multibond model should contain, as its limit, the single-
bond framework proposed here. Furthermore, the single
ligand-receptor pair picture can be applied in modeling the
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initial and intermediate stages of adhesion, where the
separation between ligand-receptor pairs is larger than
the correlation length of the membrane deformation. In
the intermediate stages, activity certainly affects coopera-
tivity by extending the correlation length between different
receptor-ligand bonds; however, it is not safe to use the
single pair approximation after the density of bonds
increases too much. The low-density requirement can also
be satisfied in biomimetic systems where the pattern of
ligands on the adhesive surface can be experimentally
controlled.

VI. CONCLUSIONS

The formalism developed in this paper paves the way for
studies about the general interplay between non-Gaussian
membrane fluctuations and processes such as bond domain
formation, cell adhesion, phagocytosis, and cell motility.
Our results show that, when the assumption of timescale
separation is valid, the receptor-ligand rates can be esti-
mated from the experimentally measured membrane fluc-
tuations and the structural properties of the ligand-receptor
pair. Importantly, it is not necessary to know the details of
the underlying microscopic processes that are driving the
membrane fluctuations, which was exemplified by the
application of our method on HMs and RBCs. The shared
qualitative features of their fluctuation spectra, before and
after activation, motivated us to propose a single model
for the spectra of their active fluctuations, although
the underlying mechanism of activation was completely
different. Moreover, the time independence of their spectra
experimentally justified the averaging procedure of the
ligand-receptor rates. Furthermore, we provided a genuine
reinterpretation of the experimental data. Namely, we
showed that the height probability distribution is consistent
with a convolution of stochastic processes that are Gaussian
and exponentially distributed. This was not previously
appreciated in the literature (including in our own previous
analysis). Moreover, this enables the mapping of the
distribution to a mechanical spring model, which simplifies
the analysis.
Using this insight, we showed that the asymmetry in

amplitudes induces an asymmetry in rates. The rates for
binding to intracellular targets are consistently smaller than
the rates for binding to extracellular targets, and the range
of fluctuation amplitudes is about 50 nm less on the interior
side, which is reasonable given the confinement of the cell.
The relative positioning of the membrane and target ligand
determines the side of the fluctuation spectrum that
contributes to the ligand-receptor binding rate.
In general, the binding rate decreases with increasing

ligand-receptor distance. This decrease is much slower in
the activated cells, compared to resting cells. The activation
is thus reflected in the significantly extended binding range
for the formation of the first bond, which is nearly doubled
in an activated cell compared to the resting cell. Namely, to

form a stable initial bond, the average membrane-surface
distance has to be on the order of the (half-)width of the
unbound membrane fluctuations, which is approximately
200 nm for the nonactivated and approximately 400 nm for
the activated macrophages (see Fig. 8).
Hence, we showed that physiological changes in fluc-

tuations can induce significant changes in the ligand-
receptor binding dynamics and affinity. Based on this
result, we propose that this might be a mechanism pre-
sent across different types of cells for controlling the
receptor-ligand-mediated membrane interactions. We hope
that further experimental investigations will validate the
approach presented here and help to increase our under-
standing of cellularly regulated fluctuations and molecular
binding kinetics.
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APPENDIX A: RBC FLUCTUATIONS

To give an additional experimental argument for the
general applicability of the active fluctuation model (27),
we have repeated the analysis we used on the macrophage
data, however, this time on the fluctuation data measured
on RBCs [data taken from Ref. [23], Fig. 5(d)]. With RBCs,
the role of the activator is played by the ATP molecules.
The nonactivated RBCs are depleted of ATP, while the
activation is done by adding the ATP to the solution. Note
that RBCs exhibit spatially dependent fluctuations. For
example, fluctuation amplitudes of 74 nm were measured at
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the thick rim, compared to the amplitudes of 41 nm in the
center. Data presented in Fig. 9 are acquired after RBCs
sedimented on a substrate, by measuring the fluctuations of
the rim on the upper/distal membrane [23].
Along with the measured spectra in Fig. 9, one can

see the corresponding fits [Eq. (27)]. Activation clearly

increases the tails of the distribution. It also observably
increases the asymmetry, putting more weight on the
negative (extracellular) part of the distribution. As can
be seen, the fits capture the measurements well, both for the
nonactivated and the activated case. The values of the fitted
parameters show the same trend as observed with macro-
phages, namely, of increasing λL and decreasing λG with
activation.
Specifically, the fit yields parameter estimates λG− ¼

2.3 × 10−4 nm−2 and λL− ¼ 3.3 × 10−5 nm−2 at the cell
exterior side, and λGþ ¼ 4.3 × 10−4 nm−2 and λLþ ¼ 4.8 ×
10−6 nm−2 at the cell interior. The measurements on
activated cells provide the values for the extracellular side
λG− ¼ 7.7 × 10−5 nm−2 and λL− ¼ 4.7 × 10−5 nm−2, while
on the cytoplasm side, one obtains λGþ ¼ 1.9 × 10−4 nm−2

and λLþ ¼ 1.7 × 10−5 nm−2. Hence, cell activation clearly
decreases λG� and increases λL� , confirming the strength-
ening of Laplace distributed fluctuations, which reflect the
slower decay of the distribution tails.

APPENDIX B: DERIVATION AND
APPROXIMATION OF THE
COARSE-GRAINED RATES

1. Binding rate

The partition function for the unbound state is given by
ZGL
u ¼ Zþ þ Z−, where
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The coarse-grained binding rate KGL
on is given by the convolution of the h distribution pGL

u ðhÞ [Eq. (27)] with
the h-dependent rate konðhÞ [Eq. (10)], namely,
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where hα ¼ h0 − ðl0 þ α=2Þ, G� ¼ λG�=λ, and L� ¼ λL�=λ. For λ ≫ λG� ; λL�, it follows that G� → 0 and L� → 0, and
we find
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Furthermore, for
ffiffiffiffiffiffiffi
2=λ

p
≪ jhαj, it follows that

FIG. 9. Experimental data and the corresponding theoretical fits
[Eq. (27)] of the RBC membrane fluctuations [23]. RBC- denotes
the RBCs depleted of ATP, while RBCþ denotes RBCs enriched
with ATP. Negative δh correspond to the extracellular side of the
distribution, while positive δh correspond to the intracellular side.
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erfc

��hα
ffiffiffi
λ

pffiffiffi
2

p
�
≈
	
0 if � hα > 0

2 if � hα < 0;
ðB4Þ

and we can further approximate Eq. (B3) with

KGL
on ≈

k0α
ZGL
u

	
exp

�
−h2α

λG−

2
− hα

ffiffiffiffiffiffiffi
λL−

p �
Θ½hα� þ exp

�
−h2α

λGþ

2
þ hα

ffiffiffiffiffiffiffi
λLþ

p �
Θ½−hα�



: ðB5Þ

Equation (29) follows by approximating the theta function arguments with hα ≈ h0 − l0 (which is valid for small binding
pockets h0 − l0 ≫ α).

2. Unbinding rate

The coarse-grained unbinding rate KGL
off is given by the convolution of the h distribution pGL

p ðhÞ [Eq. (27)] with
the h-dependent rate koffðhÞ [Eq. (11)], namely,

KGL
off ¼

Z
∞

−∞
dhkoffðhÞpGL

b ðh − h0Þ ¼
Z

∞

−∞
dhkoffðhþ h0ÞpGL

b ðhÞ
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8>><
>>:
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b =Z

−
b
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p
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� erfc
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L−

pffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
i
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h
−ðh0−l0Þ

ffiffi
λ
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pffiffiffiffiffiffiffiffiffiffiffiffiffi
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where hα ¼ h0 − ðl0 þ α=2Þ, G� ¼ λG�=λ, and L� ¼ λL�=λ and

Z�
b ¼ �

Z �∞

0

dh exp

�
−
λ

2
(hþ ðh0 − l0Þ)2 −

λG�

2
h2 −

ffiffiffiffiffiffiffi
λL�

p
jhj

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
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r

exp
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�
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: ðB7Þ

For h0 − l0 ≫ α, we have hα ≈ h0 − l0, and error functions in Eq. (B6) cancel out, leading to the following approximation:

KGL
off ≈

k0
1þ Zþ

b =Z
−
b
exp

�
−ϵb þ

ðh0 − l0 − α=4ÞαλG− þ α
ffiffiffiffiffiffiffi
λL−

p
2ð1þG−Þ

�
þ k0
1þ Z−

b =Z
þ
b
exp

�
−ϵb þ

ðh0 − l0 − α=4ÞαλGþ − α
ffiffiffiffiffiffiffi
λLþ

p
2ð1þGþÞ

�
:

ðB8Þ

Furthermore, the coefficients 1=ð1þ Z�=Z∓Þ for λ ≫ λG� ; λL� and
ffiffiffiffiffiffiffi
2=λ

p
≪ jh0 − l0j behave in the following way:

1

1þ Z�=Z∓ ≈
	
0 if � ðh0 − l0Þ < 0

1 if � ðh0 − l0Þ > 0;
ðB9Þ

which leads to the approximation

KGL
off ≈ k0

�
exp

�
−ϵbþ

ðh0− l0−α=4ÞαλG− þα
ffiffiffiffiffiffiffi
λL−

p
2ð1þG−Þ

�
Θ½h0− l0� þ exp

�
−ϵbþ

ðh0− l0−α=4ÞαλGþ −α
ffiffiffiffiffiffiffi
λLþ

p
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�
Θ½l0−h0�

�
:

ðB10Þ

Letting G� → 0 in the above equation, we arrive at Eq. (31).
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