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ABSTRACT: Periodic molecular dynamics simulations are developing to a routine tool for
the investigation of complex, polymeric materials. A typical application is the simulation of
the curing reaction of covalently cross-linked polymers, which provides detailed
understanding of network formation at the molecular scale, with examples including
gelation and glass transitions. In this article, we delineate the connection between
percolation theory and gel-point detection in periodic polymeric networks. Specifically, we
present an algorithm that can detect the onset of percolation during cross-linking of
polymers in periodic molecular dynamic simulations. A sample implementation is provided
at https://github.com/puls-group/percolation-analyzer. As an example, we apply the
algorithm to simulations of an epoxy resin undergoing curing with an amine hardener. We
also compare results with indirect gel point measurements obtained from monitoring the
growth of the largest mass and the onset of secondary cycles.

■ INTRODUCTION

In recent years, the technological importance of cross-linked
thermoset materials has been growing, with examples including
low-cure-temperature composites for the aerospace industry,1

molecularly imprinted polymers,2 rubbery ion electronic
components,3 and drug delivery hydrogels.4 The synthesis of
a covalently cross-linked thermoset polymer affords the so-
called curing reaction, which includes a very specific reaction
extent known as the gel point. This is typically characterized by
sharp changes in both soluble fraction and viscosity,5−7 caused
by the transition from a viscous liquid of single molecular
entities to an insoluble covalently cross-linked solid. Recently,
the available experimental methods to analyze this transition
have been extensively reviewed.8 The importance of gelation
for several industrial processes is also well-known.9 For
example, many molding techniques for composite materials
rely on the injection of liquid precursors; since the shape of the
composite is irreversibly set after the occurrence of gelation,
knowledge of the time window preceding the gel point is
essential. Other manufacturing processes for which gelation is
highly relevant include foaming, the design of self-repairing
materials, and 3D printing. From a microscopic point of view,
the Flory−Stockmayer10,11 theory of polymer growth explains
the gel transition by the appearance of a gel-like molecule of
macroscopic extent, which spans the whole volume of the
mixture and whose mass can be measured in macroscopic
units, thus looking “infinite” from the monomer-weight scale.5

Lately, Molecular Dynamics (MD) simulations have proven
to be an effective tool to investigate the curing reaction for
thermoset polymers, paving the way for a more detailed
understanding of the gelation process at the molecular level. In

MD simulations, gelation is typically determined indirectly by
seeking a sharp change in some physical or structural
properties of the polymerizing system, which is supposed to
signal the appearance of a volume-spanning, mass-dominant
macromolecule. Thus, a common indirect mass-based
measurement consists of determining the point at which the
heaviest molecular group starts to significantly outweigh its
runner-up. To this end, both a visual estimate12 and the point
of inflection of the largest-mass buildup13 have been employed.
A more analytical mass-based criterion is represented by the
reduced molecular weight (RMW), which is defined as the
molecular weight average of all the molecules in the system,
except the largest one. The RMW rises until the largest group
begins to predominate, after which it declines. On these
grounds, its maximum point has been used to measure
gelation.14,15

From a more structural point of view, the gel-like molecular
group naturally englobes most of the still unreacted
functionalities present in the system, thus marking the rise of
intramolecular reactions (also known as secondary cycles). As
a consequence, the inception of intramolecular polymerization
is the other common indirect property employed for gel point
detection.16
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Indirect methods, however, face challenges when applied to
sufficiently complex polymer networks. In particular, they have
limited precision, because both the emergence of a single,
highly massive group and the inception of secondary cycles can
only be estimated up to a range of curing extents. Also, they
have limited accuracy, since the appearance of the gel-like
macromolecule is related to, but not necessarily sharply
marked by, a significant increase in either the mass or the
number of intramolecular reactions of a group. Consequently,
indirect methods are more likely to demonstrate larger
uncertainties with increasing the system size, albeit with larger
simulations finite size effects should diminish. Hence, one may
not be able to harness the benefit of increased computational
effort.
To circumvent these limitations, we here introduce a new

strategy for gel point detection in molecular dynamics
simulations of cross-linking materials. Instead of looking for
changes in some sentinel properties, our strategy is to directly
recognize the appearance of a molecular group spanning the
entire simulation box. To define the problem mathematically,
we identify such a spanning macromolecule with a so-called
percolating cluster, exploiting the natural relation existing
between gelation in a polymerizing material and percolation in
a lattice of infinite size. Because atomistic simulations are
necessarily of finite and microscopic size, our definition of
percolation must rely on periodic boundary conditions to
simulate an infinite system by means of periodicity. Then, we
present an algorithm capable of detecting a percolating
molecular cluster in one, two, and three dimensions, in a
manner that is invariant under linear transformations of atomic
coordinates. We argue that our solution is accurate within the
limitations imposed by system size and periodicity, while its
precision is naturally independent of the size of the network.
We further argue that it can be applied to both atomistic and
coarse grained models, employing both orthorhombic and
triclinic simulation cells.
Although our procedure is not system specific, we illustrate

it through an application to five independently constructed
atomistic epoxy systems, comprised of diglycidyl ether of
bisphenol A (DGEBA) and 4,4′-diaminodiphenyl sulfone
(DDS) monomers undergoing cross-linking (Figure 1). This
system offers challenges of both topological and dynamical

nature. The former are reflected by the presence of numerous
aromatic structures and cross-linking-derived intramolecular
loops, which requires the algorithm to correctly and efficiently
handle looplike connectivity. The latter are rooted in those
force-field and cross-linking interactions whose complex
interplay determines the growth of the network. In this
sense, the DGEBA/DDS mixture is ideally suited to show that
our method can be successfully applied to a complex, atomistic
system of relevant interest to the computational chemistry
community.

■ RELATION BETWEEN GELATION AND
PERCOLATION

Consider a square lattice of vertices (Figure 2) in which every
two neighboring vertices are joined to each other by a bond

with probability p. A group of vertices connected altogether
forms a so-called cluster. When the lattice is infinite in size, a
cluster that extends infinitely in all of the dimensions of the
lattice is called a percolating cluster.17 Such a cluster appears for
the first time when p reaches a critical value, known as the
percolation threshold pc. Indeed, at this stage a hypothetical fluid
poured on top of the system would no longer find itself an
open path through the network, thus being unable to percolate.
Both the existence of this critical value and the almost-sure
(i.e., with a probability of one) uniqueness of the

Figure 1. Visualization of the largest molecular group in one of our example epoxy systems (frontal view). The system consists of a periodic box
containing 2000 DGEBA and 1000 DDS molecules (127 000 atoms). The shape of the box is approximately cubic, as a result of isotropic pressure
control, with a side length of about 12 nm. Only the largest, reacted molecular group is portrayed as balls and sticks, while everything else is shown
as wireframes. (a) corresponds to 20% curing, (b) to 50%, and (c) to 63%. (c) coincides with the point of percolation: the appearance of a single,
spanning, highly massive macromolecule is evident.

Figure 2. A 20 × 20 lattice of vertices, showcasing examples of two
separate clusters of finite size (a) and of a percolating cluster (b).
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corresponding percolating cluster can be mathematically
proven.18

Now, suppose that the size of the lattice ideally matches the
number of molecules in a polymerizing system (the order of
magnitude of the Avogadro number). Then, the relation
between a lattice of bonded vertices and a cross-linking
material (Figure 3) naturally emerges by identifying each

original small monomer with one vertex of an irregularly
spaced lattice and, thus, macromolecules (groups of monomers
bonded together) with clusters. The probability to detect a
closed bond in the lattice finds its chemical counterpart in the
probability pcross‑link to detect a cross-link bond between two
monomers in the system.
As stated above, the point of gelation is defined as the extent

of reaction at which a macroscopic network or molecule
emerges. We can relate gelation to percolation theory by
requiring the formation of an equally spanning network of
chemical bonds,17 vast enough to look infinite from the
monomer scale. A spanning network of connected monomers
is naturally identified with a percolating cluster, which was
defined above as a spanning set of bonded lattice vertices.19

Therefore, the value of pcross‑link at which a percolating molecule
appears for the first time is exactly the gel point criterion we
seek. In the SI, we show that this quantity is intimately
connected to the extent of curing which is more convenient to
work with (see Section S-1).
Such a strong comparison between gelation and percolation

only holds if the simulated molecular system/lattice is of
macroscopic size from the point of view of single monomers.
Strictly speaking, because MD simulations are currently
confined to the nanometer scale, this condition cannot be
achieved (for example, the linear size of one of our DGEBA
molecules is about 0.1 nm, so only 2 orders of magnitude
below the box side, of approximately 11 nm).
However, we can work around this limitation by exploiting

periodic boundary conditions to postulate a notion of
percolation in a finitely sized but infinitely repeating system.
Specifically, we say that a cluster is percolating if, by starting
from one of its vertices (monomers) and walking along its
bonds, we encounter two different periodic copies of the same
initial vertex, and we do so in a manner that warrants a three-
dimensional periodic structure. Hence, in a periodic MD
system that is not truly infinite in size, the periodic percolation
threshold directly resembles the physical significance of
gelation, i.e., the emergence of a unique network of connected
monomers that periodically and three-dimensionally spans the

simulation box. This periodic threshold constitutes a direct
structural criterion for gel point detection. The point it
identifies would coincide exactly with the actual point of
percolationthe gel pointin the limit of a macroscopic
system, bringing the advantage that the quality of our periodic
criterion is only limited by system size. It is thus predicted to
improve as the simulated system gets larger. Furthermore, the
periodic percolation threshold exclusively hinges on the
connectivity of the simulated particles across different periodic
images, regardless of the nature of the particles themselves and
of the geometrical shape of the repeating simulation cell. This
aspect advantageously implies that this criterion can be equally
applied to both atomistic and coarse-grained systems, utilizing
periodic cells of any symmetry, including the orthorhombic
and triclinic systems.
In the next section, we elaborate on the definition of

percolation in a periodic system and introduce a periodicity-
based algorithm that can efficiently detect such a structure.
Importantly, the output of such an algorithm will be shown to
be univocal (i.e., a single percolation point is identified in each
case), making this approach naturally precise, independently of
the size of the simulated system.

■ RIGOROUS ALGORITHM TO DETECT
PERCOLATION IN A PERIODIC SYSTEM

To identify and characterize the nature of a percolation within
a system with periodic boundary conditions, we employ
techniques from basic linear algebra as well as variations of
simple graph algorithms known in computer sciences. The
basic idea underlying the algorithm is that, in a system with
periodic boundary conditions, one only considers a finite
amount of vertices (atoms) and a growing number of edges
(bonds) between them. We can therefore observe an infinite,
percolating cluster (molecule) if and only if, by following the
edges within a connected cluster, we encounter two different
periodic copies of the same vertex. The connecting vector
between two copies of the same vertex within a cluster is then
referred to as a period of that cluster, with the set of all its
periods being representative of its overall periodic structure.
As all linear combinations with integer coefficients of periods

are again periods, we can attribute a periodic dimension to a
cluster by determining the algebraic vector-space dimension of
the generally infinite set of periods, as is well-known from
linear algebra. Due to the discrete nature of the molecular
graph, there will be a representative set of nonzero period
vectors with the same dimension as the set of all periods of the
overall cluster, of which we can determine the dimension using
basic linear algebra in finite computational time. Finding this
representative set of vectors for each cluster in an efficient
manner is the main idea behind our algorithm.
The algebraic properties of the vector space dimension allow

for application of the described algorithm to any triclinic
periodic bounding box and not exclusively to one adopting
orthorhombic pbc.

Computational Methods. Starting from an arbitrary
initial vertex, we can explore the entire cluster containing the
starting vertex, by iteratively following all outgoing edges of an
already explored subcluster, which equates to a breadth-first
search (BFS) in computational science terms. If we do not
encounter two different periodic copies of the same vertex by
following edges, there is no percolation. If we do encounter
two different copies, there might be a percolation occurring in
any number of dimensions from 1 to the total dimension of the

Figure 3. Abstracting a polymerizing chemical system into an
irregular lattice of bonded vertices.
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system. However, attempting to break down the test for
percolation independently for each spatial dimension does not
provide any insight into the overall periodic dimension of a full
percolating cluster (see Figure S1 for an illustration of the lack
of rotational invariance of this separated approach). We
therefore need to determine the dimension of the full set of
periods of a cluster and cannot look at the periods in each
dimension independently.
To gain more insight into the structure of the percolating

cluster, whenever we encounter another copy of a vertex that
we have visited previously, we keep track of the connecting
vector between it and the first encountered vertex of its kind.
Here the vector between the positions of two observed copies
is a period of the overall lattice structure of the percolating
cluster and needs to be added to the overall set of periods for
the cluster.
This also means that we do not need to consider outgoing

bonds from any such copy of an already encountered vertex in
our exploration, limiting the set of vertices to visit in a possibly
infinitely expanding cluster.
Let us use the configuration as seen in Figure 4 for an

example on a simplified system. The system has periodic
boundary conditions only in one dimension and consists of a
total of 7 vertices labeled 0 through 6. We start our exploration
of the cluster at the vertex 0, which we immediately encounter
for the first time. In the first step of the BFS we visit all vertices
at a distance of 1 edge from vertex 0 which makes us encounter
the vertices 1, 2, 3, and 4 each for the first time. In the second
step of the BFS we move on to all vertices at a distance of 2
edges from vertex 0, which leads to the first visit of vertices 5
and 6 as well as encountering copies of vertices 1, 2, 3, and 4 in
neighboring periodic cells. We then take the distance vectors
between each of these copies and the first-encountered copies
of these vertices and keep them as members of the sets of
periods. As we are in one dimension, these periods are
equivalent to differences in cell indices, where negative and
positive cell indices identify, respectively, the cells to the left
and right of the starting one, which leaves us with members ±1
of the set of periods. In a third step we only follow the
outgoing edges of vertices 5 and 6, due to which we only
encounter the already visited original copies of 5 and 6, which
contribute no further nonzero periods to our set of periods.
We now have followed all edges within the cluster,
encountering all vertices of the cluster at least once,
completing the gathering step of the algorithm.
In the end, we can determine the algebraic dimension d of

the overall set of collected periods via an appropriate
algorithm. Any optimization where we only keep track of a
set of linearly independent vectors may also be applied to
reduce run time and memory requirements.
In three-dimensional space, this dimension d will help us

distinguish between percolating clusters that have the structure
of a long string of molecules (d = 1), those that have the
structure of a sheet (d = 2), and those that span the entire
periodic space with a full lattice structure (d = 3). The point in
time when we first observe a cluster of full lattice dimension d
= dmax can be uniquely defined as the percolation point of the
system, where dmax denotes the number of dimensions with
periodic boundary conditions (pbc). In a typical three-
dimensional simulation box in the shape of a parallelepiped
with pbc in all directions, this amounts to dmax = 3.
Going back to the above example in Figure 4, we have a set

of periods with at least one nonzero entry. As dmax = 1 in this

simplified case and any nonzero period amounts to at least
one-dimensional periodicity of the cluster, we obtain a
percolation of maximum dimension d = 1 for the studied
cluster. Therefore, we could have stopped our BFS after step 2
of the analysis, since the dimension of the set of periods could
not possibly have grown any further.
For a more rigorous and formal definition of the full

algorithm and its individual steps, please refer to the SI.
Properties of the Algorithm. Invariance of the Results.

As proven in the SI (see Section S-3.3), the following property
holds:
Theorem (Invariance of detected percolation dimension).

The lattice dimension of a connected cluster of vertices as

Figure 4. Graphical illustration of the percolation detection algorithm
in a two-dimensional system with periodic boundary conditions in
only one dimension (dmax = 1). Percolation in one dimension (the
maximum allowed) is eventually observed. Cell 0 indicates the
arbitrary origin cell with the arbitrary origin at atom 0. Each circle/
vertex represents an atom and each edge a bond. Periodic copies are
drawn with reduced opacity, and copies of edges are drawn with
dashed lines. Cells −1 and 1 are the first copies in their respective
direction. Red vertices indicate the detection of a duplicate vertex,
leading to truncation of the BFS; the respective periodicity vectors are
marked in red. The edges already considered in the BFS are colored
blue, as are the first-encountered copies of each vertex.
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obtained by the percolation algorithm described previously is
invariant under affine linear transformations.
Another property immediately resulting from the proof of

the above theorem is the following:
Corollary (Independence of starting vertex). The lattice

dimension of a connected cluster of vertices as obtained by the
percolation algorithm is independent of the chosen starting
vertex for the algorithm.
We are therefore safe to start exploring any possible cluster

from any of its constituting vertices without affecting the
detected periodic dimension. Furthermore, neither the exact
positioning of the periodic boundary conditions nor trans-
lations of the entire system within the periodic boundaries can
influence the outcome of the algorithm, making it satisfyingly
stable in its applicability.
Algorithmic Complexity. The terminal condition of not

following outgoing edges originating from copies of encoun-
tered vertices causes the overall number of edges and vertices
in the exploration process to be bounded by the number of
edges ec and vertices vc in the cluster. This guarantees that the
proposed algorithm will always terminate. It also bounds the
worst-case run time complexity of the algorithm at +e v( )c c ,
since the periodicity dimension check can be carried out in
constant time for a fixed overall system dimension dmax. For a
total number of edges e and vertices v in the entire system, this
leaves us with a complexity +e v( ) for the execution on the
state of the whole system at a fixed point in time.
This also means that the algorithm shares the same linear

complexity as those employed for simple cluster detection as
well as for cluster mass detection, both of which also amount
to a BFS with varying constant-time requirements for the
processing of each encountered vertex. This property makes it
a well-suited alternative to the algorithms presently employed
in the analysis of periodic thermoset-hardening simulations,
both from a theoretical and a computational point of view.
With only minor variations, the described algorithm can also

be applied to the detection of gelation in finite-size and
nonperiodic systems. For this purpose one would introduce a
virtual particle for each dimension of the system and introduce
connections between vertices within a certain distance of the
edge of the system in that direction to the virtual particle,
introducing a virtual periodicity condition. Running the

described percolation detection then provides the number of
dimensions in which a particle spans the entirety of the spatial
extent of the finite system in that respective dimension, with
similar implications for the gelation of the system when
percolation in all dimensions is observed as in the periodic
system.

■ DETECTING PERCOLATION IN A DGEBA/DDS
MODEL SYSTEM

In this section, we illustrate an application of our algorithm by
computing the point of periodic percolation for a relatively
large, highly cross-linked epoxy system. We also compute the
gel point by means of the traditional methods based on the
growth of the largest molecule’s mass and on the onset of
secondary cycles, comparing these results to our percolation
measurement. However, we do not intend to offer a
comparison of such measurements with any experimental
data; rather, we endeavor to highlight the deficiencies suffered
by indirect methods when they are applied to large molecular
networks.
Chemically, epoxies are reactive prepolymers defined by the

presence of an epoxide ring at either end of the molecule
(Scheme 1). When mixed at a sufficiently high temperature
with a hardener, such epoxide gets covalently cross-linked, or
“cured”, with the end group of the hardener, which is often an
amine. The physical qualities of the material depend on the
resulting highly cross-linked covalent network, thus making
epoxies an ideal model system for the investigation of network
properties.
Each example epoxy system contains 1000 hardener DDS

(4,4′-diaminodiphenyl sulfone) and 2000 DGEBA (diglycidyl
ether of bisphenol A) resin molecules, of length n = 0, for a
total of 127 000 atoms. The chosen 2:1 ratio is stoichiometric
and meant to resemble laboratory conditions. The LAMMPS20

(Dec. 2018 stable) MD package and the GAFF21 force field
were employed, utilizing partial atomic charges derived via a
RESP22 fragment-based approach. A 1 fs time step and
periodic boundary conditions were applied. The cutoff for the
calculation of Coulomb interactions in direct space and for
VDW interactions was 10 Å. All systems were initially
minimized and then equilibrated for 2 ns in the NPT ensemble
at 503 K23 and 1 atm, using Nose−́Hoover thermostat and

Scheme 1. (a) Unreacted Epoxy (DGEBA) of Length n and the Amine Hardener (DDS) and (b) Possible Configuration within
the Cured DGEBA-DDS Covalent Network, Showing Both Reacted and Unreacted End Groups
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barostat. Following this, the curing reaction was simulated in
the NPT ensemble by means of the f ix bond/react24 algorithm
shipping with LAMMPS, reaching at least a 95% extent of
reaction. Further simulation details can be found in the SI. A
visualization of one of our systems at three different curing
extents is provided in Figure 1.
The point of percolation in our five model systems was

detected in the (61 ± 3)% range of reaction extents. The
existence of a nonzero standard deviation for this result may
seem surprising. In fact, we have shown that the point of
periodic percolation is well-defined mathematically and that it
can be determined by a rigorous algorithmic procedure,
implying that there can be no uncertainty related to each
percolation measurement. However, because the five systems
were each constructed with different initial conditions, they are
expected to have slightly different points of percolation as well,
leading to the observed uncertainty. It is important to realize
that such ensemble disparities, associated with statistical
fluctuations in system construction, are supposed to disappear
in the limit of a macroscopic simulated system. As a matter of
fact, in this limit, the point of periodic percolation tends to the
actual point of percolation, which is uniquely determined by
the topological properties of the network, as we argued earlier.
The situation for mass-based methods is quite different. The

results for two of our epoxy models are shown in Figure 5,
while results for all other systems are reported in Figure S1 of
the SI. Mass-based methods try to indirectly detect the gel
point by seeking the emergence of a single macromolecule that
considerably outweighs all others. This event is usually
recognized either by the point of inflection of the largest-
mass buildup (orange curve in Figure 5) or by the point at
which this curve considerably rises over the growth of the
second largest mass (red curve).
Both plots in Figure 5 show that the largest group is able to

take over the second-largest one while the latter is also still
growing (at a lesser rate), leaving doubts about which point
should mark a “significant” difference between the two. As a
matter of fact, any value in the curing range 50−60% could
reasonably be chosen for such a purpose, as depicted by the
error bar in Figure 6. The figure compares gel point
measurements as obtained by percolation with those from
indirect methods. Choosing the inflection point of the heaviest
molecule growth is certainly analytically convenient, yet

arbitrary. Moreover, its identification would require a good
quality functional fit, based on undesirable smoothing of a
significant portion of the data as well. Alternatively, one could
rely on a simpler but also more subjective visual estimate,13

which would again locate the gel point in the same 50−60%
range.
Seeking a more quantitatively precise criterion, the reduced

molecular weight (RMW) has been introduced in order to
measure the average molecular mass of all the groups except

Figure 5. Gel point measurements for two epoxy systems based on various strategies. Black curve: reduced molecular weight; orange curve:
normalized largest mass; red curve: normalized second largest mass; blue curve: normalized number of secondary cycles.

Figure 6. Comparing the gel point percolation criterion to indirect
measurements for all five systems. (a) Gel point values are expressed
as cure percentages. The percolation error bar is the standard
deviation of the results for the five systems. The RMW error bar is
obtained by error propagation, estimating an 8% and 10% uncertainty
for the peaks of the black curves in Figure 5a,b, respectively, and no
error bars for the other three systems. Error bars for largest mass and
secondary cycles both have a 10% width, respectively centered around
55% and 65% curing, as discussed in the text. These midpoints are
purely a guide to the eye. (b) Gel point measurements from all
methods have been rescaled by their corresponding percolation
values, to highlight how much indirect results precede or follow the
percolation threshold. Error bars are then obtained as above. (c) The
average percolation value has been subtracted from each of the other
results, to gauge to what extent indirect measurements agree with the
point of percolation.
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the largest one. The maximum point of this quantity is
supposed to mark the appearance of the single highly massive
group that mass-based methods seek. In Figure 6, the peak of
the RMW identifies the interval (57 ± 6%) for the gel point.
The RMW is definitely a more analytic and less subjective

criterion, but its quality crucially depends on it exhibiting a
single, sharp peak, followed by a steady fall. This, however,
need not be the case: both peaks in the black curve of Figure
5a are of comparable heights and correspond to negative jumps
in the second-largest group of equally comparable magnitudes,
thus making the choice between them ambiguous. Moreover,
looking at Figure 5b, one can identify multiple local maxima
contributing to a single global peak, smeared over about a 10%
curing range. Since all extrema in this interval are of
comparable heights, there is no clear reason for preferring
the global maximum in this case. These two observations lead
to uncertainties of 8% and 10%, respectively, on which the
peak of the black curve should be used to mark the gel point in
Figure 5a,b. The consequence of error propagation is then a
large 6% error bar in Figure 6a, obtained assuming no
uncertainty for the other three epoxy systems, in which the
RMW shows a much clearer single peak (Figure S2 of the SI).
Although indirect methods based on mass have been

successfully applied to systems with a relatively small number
of monomers,12−16 our results have clearly uncovered the
shortcomings suffered by these strategies when applied to
sufficiently large molecular networks.
On the one hand, we have shown that multiple massive

macromolecules are able to coexist for a perceivable amount of
time, before a single group eventually takes over. This causes
the RMW to exhibit ambiguity due to the presence of multiple
comparable peaks and prevents the existence of a sharp point
after which a single macromolecule predominates in mass. As a
consequence, mass-based methods are affected by limited
precision, as visible from the large error bars of Figure 6.
On the other hand, from Figure 5 (and Figure S2) we are

able to notice how the percolation point discernably follows
the peak of the RMW in all cases, with curing delays ranging
from 1 to 6%. This is evidence that the largest macromolecule
is able to considerably outweigh all other groups while its bond
network still does not truly span the system. Such under-
estimation is systematic, indicating that mass concentration in
a single group may at least be partially blind to those structural
changes involved in percolation. As a result, even if mass-based
methods were precise enough to provide a single point rather
than a range, they could still fail in accuracy, in light of the fact
that mass accumulation and percolation can indeed be separate
events. Nevertheless, Figure 6b,c shows that the point of
percolation does fall within the black and orange error bars,
indicating that mass-based measurements could at least be in
agreement with percolation results in this case.
Assuming a more structural perspective, the onset of

secondary cycles is the other indirect criterion usually applied
to detect the gel point. This is motivated by the fact that the
gel-like macromolecule, once emerged, must necessarily
enclose most of the unreacted end groups remaining in the
system, leading to a sudden rise in the number of intra-
molecular cross-linking events. A secondary cycle can be
identified by detecting a closed loop connecting a cross-linked
monomer back to itself.
From the blue curves in Figure 5, we can observe how the

buildup in the number of secondary cycles consistently shows
two distinct linear regimes at low and high curing extents. By

intersecting the corresponding tangent lines, one may
determine at which point the slope change occurs and use it
to mark the inception of intramolecular reactions. The greatest
disadvantage of this method lies in the very sensitive
dependence of the intersection abscissa25 upon the slopes of
the two lines. Because such slopes depend on the widths of the
two linear regimes, which must be subjectively determined by
the experimenter, once again only a curing range can be
identified. A quick visual estimate locates the intersection
abscissa in the 60−70% interval, about 10% to the right of our
previous mass-based approximations.
Differently from mass-based methods, the onset of intra-

molecular reactions is expected16 to be in better agreement
with percolation, since this method is indirect but at least
sensitive to changes in network topology. Our data seem to
confirm this expectation: Figure 6b,c shows that the average
point of percolation falls within the blue error bar,
corresponding to secondary cycles. Although we noticed
earlier that the same is true for the black and orange error
bars, Figure S2 of the SI adds the observation that, with one
exception, the point of percolation always falls within the same
60−70% uncertainty interval that the onset of intramolecular
reactions does. The same cannot be said for the 50−60%
interval identified by the largest mass method, since only one
percolation data point lies there.

■ CONCLUSIONS

We have detailed how the emergence of a percolating
molecular cluster, in a lattice of infinite size, is the natural
structural criterion to detect the appearance of a gel-like
macromolecule in a polymerizing material. To make this
criterion tractable to MD investigation, we have introduced a
notion of percolation for the case of a finitely sized but
infinitely periodic molecular lattice, based on the appearance of
a three-dimensional periodic structure in the simulated system.
Furthermore, we have implemented an algorithm that can both
efficiently and univocally identify such a structure. This
constitutes a rigorous and accurate procedure to detect
gelation, whose precision is only affected by statistical
fluctuations in system construction. Because such fluctuations
are supposed to average out in the limit of a macroscopic
system, the quality of our criterion is expected to improve at
greater system sizes.
By stark contrast, we have revealed how indirect methods

based on mass suffer from severe pitfalls when applied to large
polymerizing systems. These are mainly due to the
impossibility of reliably identifying the rise of a single mass-
predominating macromolecule and to the time gap existing
between the appearance of such group and the appearance of a
truly percolating structure. At the system size we investigated,
this gap is discernible but still small enough for mass-based
measurements to agree with percolation results. However, we
would expect it to widen as larger molecular networks with
even vaster conformational spaces are investigated. Finally, we
showed that the same size limitation does not affect the
inception of intramolecular reactions, which depends on
network topology rather than mass, thus providing better
agreement with percolation results. Nevertheless, in analogy
with mass-based strategies, this method is too an indirect
criterion, and its precision is greatly limited by the fact that the
onset of secondary cycles cannot be univocally identified.
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