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Abstract

Hypothesis: Diffusion in confinement is an important fundamental problem with significant
implications for applications of supported liquid phases. However, resolving the spatially dependent
diffusion coefficient, parallel and perpendicular to interfaces, has been a standing issue and for objects
of nanometric size, which structurally fluctuate on a similar time scale as they diffuse, no methodology
has been established so far. We hypothesise that the complex, coupled dynamics can be captured and
analysed by using a model built on the 2-dimensional Smoluchowski equation and systematic coarse-
graining.

Methods and simulations: For large, flexible species, a universal approach is offered that
does not make any assumptions about the separation of time scales between translation and other
degrees of freedom. The method is validated on Molecular Dynamics simulations of bulk systems of
a family of ionic liquids with increasing cation sizes where internal degrees of freedom have little to
major effects.

Findings: After validation on bulk liquids, where we provide an interpretation of two diffusion
constants for each species found experimentally, we clearly demonstrate the anisotropic nature of
diffusion coefficients at interfaces. Spatial variations in the diffusivities relate to interface-induced
structuring of the ionic liquids. Notably, the length scales in strongly confined ionic liquids vary
consistently but differently at the solid-liquid and liquid-vapour interfaces.

1. Introduction
Molecular transport in strong confinement is a multi-

scale problem [1, 2]. It is particularly acute when there
is no clear spatial length separation between the size of
molecules within the fluid, the confinement length-scale,
and the length scale of the interaction potential between
the diffusing particle and the solid phase [3, 4]. Namely,
close to solid-liquid (SL)1 [5–7] and liquid-vapour (LV) [8–
10] interfaces, solvent layering affects the potential of mean
force between the diffusing particle and the interface itself.
This can yield a higher level of organisation at the interface
compared to the bulk liquid, in turn affecting diffusion into
and within the interface layers [8, 10–14].

The consequence of the interface-induced change in the
free energy landscape are modifications of the preferred
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conformations of the molecules within the fluid [1, 15,
16]. In the context of transport, different average molecular
shapes at the interface and in the bulk should be associated
with different effective hydrodynamic radii [16–18]. Fur-
thermore, structural fluctuations of the diffusing molecules
[19], induced by frequent interactions with neighbours and
external potentials, may be coupled to translations on certain
time scales already in bulk liquids, as they occur under the
influence of the same interactions that affect simple diffusion
[20]. Close to interfaces, both amplitudes and timescales
at which fluctuations occur can be strongly modified [9,
10, 21], which may be particularly important in molecular
liquids where the constituents itself are sizable molecules.
All these effects can both hinder or promote diffusive trans-
port close to interfaces compared to bulk configurations and
introduce anisotropic mobility parallel and perpendicular to
the confining surface [22, 22–24]. The extent of this cou-
pling will depend on the specific properties of the materials
involved, preferred particle conformations and the direction
of motion [17, 18].

The discussed phenomena are particularly important for
ionic liquids (ILs) [6, 14, 25–29]. ILs are molten salts with
very low vapour pressure that remain in the liquid state even
at room temperatures due to strong Coulomb interactions
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Figure 1: Bulk IL system slicing and molecular structure:
The simulation box for a bulk IL (1000 ion pairs) sliced into
slabs for the analysis of diffusion based on particle lifetime,
together with a series of imidazolium-based cations [C𝑛Mim]+

of different alkyl chain lengths (𝑛 = 2, 4, 6, 8, 10) and the
[NTf2]− anion. (Figure adapted from [47])

and asymmetric ion sizes [15, 26, 28, 30–33]. Their struc-
tural properties, and in particular those belonging to the 1-
alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
[C1C𝑛Mim] series of cations combined with the bistriflimide
[Ntf2] anions, have been extensively studied [3, 28, 29, 34–
40]. The cations [C1C𝑛Mim] can vary in chain length from
𝑛 = 2 being comparable in size to the anion (ca. 0.4 nm) to
𝑛 = 10, which is about 1.3 nm long, which leads to strong
coupling close to interfaces. On hydroxylated alumina their
adsorption is mainly governed by the formation of hydrogen
bond networks [12, 41]. The formed films are highly stable,
with up to 8 or even 9 solvation layers forming on top of
a solid [1, 7, 12, 42–44], with cations arranging the polar
heads parallel to the surface [13, 45]. On the liquid vacuum
interface, the alkyl chains organise into a hydrophobic layer,
positioning the axis of the cation perpendicular to the
interface [13, 46].

Characteristics of ILs’ diffusive transport, especially in
confinement are still highly debated [48]. On one hand,
the difficulties to understand this system are rooted in the
size of the ions and their complex correlations. But on
the other hand, the methods available to resolve diffusing
in confinement are limited. The commonly used approach
to address these challenges are molecular dynamics (MD)
simulations [28, 34, 38, 49–56]. However, in this case, the
transport coefficients need to be extracted from recorded
trajectories.

In a prequel to this work, we extensively discussed the
available methodologies to calculate spatially dependent
diffusion coefficients from MD simulations [57]. We de-
vised the Simple Particle Model (SPM) for the analysis of
interface-normal diffusivity based on local lifetime statistics
of simple point-like particles. We demonstrated in water
filled pores that the SPM accurately captures the diffusivity
profile despite the presence of a statistical drift close to the
interfaces. This was confirmed via the extension of the basic
model that accounts for the influence of drift induced by a

gradient in the effective interaction potential (referred to as
SPM+d). As a result, we found that the diffusivity of water
in a pore is highly anisotropic with the perpendicular com-
ponent showing a somewhat unexpected, non-monotonous
behaviour.

Applying this new methodology to more complex liquids
like ILs is a natural step forward. However, ILs clearly
violate the basic premises of the SPM as well as those of
all other currently available approaches, which we demon-
strate herein. Therefore, to resolve anisotropic, and spa-
tially dependent diffusion coefficients of extended, flexible
molecules we expand on the previous theoretical analysis. In
doing so, we develop the so-called Extensive Particle Model
(EPM) to analyse interface-normal diffusivity in complex
fluids. Our extended model explicitly captures the internal
fluctuations of extensive particles and their influence on the
observed lifetime statistics, which is a unique advantage of
our approach compared to existing methodologies. Conse-
quently, this allows us to fully resolve the diffusion profiles
of cations and anions within IL films and study the effect of
the ion size and density correlations on diffusive transport in
confinement.

2. Bulk ILs and the dawn of the Simple
Particle Model
We first check the applicability of the established SPM

approach for point-like particles [57] on bulk IL systems.
To apply the SPM, the system is cut into parallel slices
of thickness 𝐿 (fig. 1). The SPM then establishes a link
between the mean diffusion coefficient orthogonal to the
cuts 𝐷⟂ and the mean expected particle lifetime within a
slice based on the drift-free Smoluchowski equation [58].
Applying appropriate boundary conditions yields

⟨𝐷⟂(𝑧)⟩ = 𝑐 × 𝐿2

𝜏
. (1)

with a coefficient 𝑐B = 1∕12 for bulk-like slabs (i.e. particles
can leave to either side) and 𝑐𝐿𝑉 = 1∕3 for LV-like slabs (i.e.
particles can only escape to one side) under the assumption
of a constant background potential.

An extension to the SPM that accounts for the effect of
a constant drift 𝜇 across the slab, is referred to as SPM+d
[57]. For bulk-like slices, it results in

⟨

𝐷⟂+𝑑(𝑧)
⟩

= 1
12

×𝐾
(

𝜇𝐿
𝐷

)

𝐿2

𝜏
, (2)

where 𝐾(𝛾) denotes a correction factor based on the relative
amplitude 𝛾 = 𝜇𝐿∕𝐷. For small values of 𝛾 ≤ 2, the
influence of this correction is minimal [57].

To explore the SPM in imidazolium-based ILs, we first
perform MD simulations of bulk systems (see appendix D for
methodological details). Each bulk IL consists of a thousand
small [𝑁𝑇𝑓2]− anions and the same number of [C𝑛Mim]+
cations, where the alkyl chain length is systematically in-
creased (𝑛 = 2, 4, 6, 8, 10), placed in a box with periodic
boundary conditions. Diffusion data originate from a 100 ns
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Table 1
Testing the performance of the SPM in bulk ILs: ILs with 𝑛
carbon atoms in the alkyl chain of the cation are investigated.
Reference bulk self-diffusion coefficients (MSD) for cations and
anions (superscript +∕−) are obtained from MD trajectories
using the full-system analysis of mean square displacements
with gmx msd. Results for the SPM are obtained through eq. (1)
with 𝐿 = 1 nm. Furthermore, SPMErr denotes the error of
𝐷 = 𝐷SPM relative to the MSD value as defined in eq. (3).
Experimental results (EXP) are adapted from Tokuda et al.
[59] as described in appendix F. All diffusion constants are in
units of 10−7 cm2 s−1.

𝐷+

𝑛 MSD SPM SPMErr EXP [59]

2 3.5 ± 0.1 6.0 ± 0.2 71% 5.3 ± 2.6
4 2.6 ± 0.1 4.8 ± 0.1 85% 3.0 ± 1.4
6 1.4 ± 0.1 2.8 ± 0.1 100% 1.8 ± 1.2
8 0.8 ± 0.1 2.0 ± 0.1 150% 1.3 ± 1.4
10 0.7 ± 0.1 1.7 ± 0.1 142% –

𝐷−

𝑛 MSD SPM SPMErr EXP [59]

2 2.0 ± 0.1 3.8 ± 0.1 90% 3.3 ± 1.4
4 1.7 ± 0.1 3.5 ± 0.1 106% 2.4 ± 2.2
6 1.1 ± 0.1 2.4 ± 0.1 120% 1.7 ± 1.0
8 0.7 ± 0.1 1.9 ± 0.1 170% 1.3 ± 0.9
10 0.6 ± 0.1 1.7 ± 0.1 180% –

long production run. The expectation is that with increasing
cation size the performance of the SPM worsens.

However, in order to validate the SPM, reference bulk
values of diffusion coefficients must be established. There-
fore, we first perform a standard analysis of diffusivities
based on the Mean Square Displacement (MSD) of the
ions. The results in table 1 show that our model system
agrees well with experimentally measured anion and cation
diffusion constants at relevant temperatures, both in terms
of absolute diffusivities, as well as the apparent cationic
transference number [59]. Like in experiments (see table 1),
we find that cations have higher self-diffusion coefficients
than anions, even at large cation sizes. However, with in-
creasing 𝑛, the difference between 𝐷+ and 𝐷− becomes
smaller, such that the apparent transference number becomes
close to 0.5 for 𝑛 = 8. We conclude that our force field
produces transport behaviour comparable to experimental
observations as supported by the results of the established
method (Einstein/MSD) which is certainly applicable to the
bulk system.

Applying the SPM to the pure liquid bulk ILs using
𝐿 = 1 nm results in drastic deviations from the reference
diffusivities (see table 1). Here MSD-based and not experi-
mental data are used for the comparison as the benchmark
needs to be executed on data shared with the reference. This
specifically validates the performance of the analysis method
and not that of the chosen force field. In the comparison
of the SPM and MSD approaches we find large deviations
already for systems with the smallest considered cation,

due to strong anion-cation interactions. The results further
deviate as 𝑛 increases from 2 to 10. Specifically, for cations
the SPM error

|𝐷MSD −𝐷|

𝐷MSD
(3)

of the SPM increases from 75% to 160%. The large and
further increasing errors in the diffusivities of cations may
be attributed to the gradual prevalence of the fluctuations of
their centre of mass due to internal degrees of freedom being
affected by inter-molecular interactions. These interactions
coincide with increasing local structuring in imidazolium-
based ILs as a result of increasing cation chain length, as
has been predicted by simulations and theory but also been
observed experimentally [60, 61]. The fluctuations of the
centre of mass shorten the mean lifetime of cations within
the slab, such that the SPM more and more overestimates
the diffusivity even if the viscosity of the IL decreases.

The errors are even larger for anion diffusion. In this
case, the fluctuations of internal degrees of freedom play
little role. Instead, due to strong attractive interactions, posi-
tional fluctuations of the anions are strongly correlated with
those of the cations, even for 𝑛 = 2. These correlations
increase with the cation size due to stronger ionic coordina-
tion appearing in the IL, which have also been observed in
experimental studies [62–65]. Namely, [C𝑛mim][Ntf2] ILs
were found to develop continuous, relatively dense ionic
regions and — for shorter chains — islands of non-polar
regions, the latter growing with 𝑛. Above 𝑛 = 6 the non-
polar domains percolate into a second continuous region
overall forming a bi-continuous fluid phase [66]. At this
point, translational diffusion of the cation is basically the
same as that of the anion due to strong correlations between
the delocalised charges that the ions possess. This coupling
induces faster excursions of the anion from the slab than
expected, contributing to the error of the SPM.

These results demonstrate that the SPM is not suitable for
the analysis of diffusion in ILs. Importantly, our results point
to a general shortcoming of Markov-State-Model-style ap-
proaches for determining diffusion coefficients. These mod-
els cannot account for different effects that occur on compa-
rable time scales as the translational diffusion. Consequently,
the separation of time scales and the accurate determination
of diffusion constants are impossible without specially engi-
neered tools. This task is undertaken in the following section.

3. Extensive Particle Model (EPM) for
particles with internal degrees of freedom
To rectify the discussed shortcoming of the SPM and

similar approaches, we extend the previous theory [57]
to take into account more complex, structurally flexible
molecules. This extension is kept very simple to be as general
as possible and will be referred to as the Extensive Particle
Model (EPM) (see appendix A for details).

We start our analysis on a reduction of the liquid dy-
namics to movement along only one major axis, which we
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Figure 2: Scheme of the nanoconfined simulation box (S-L-V)
containing 1800 ion pairs: The highlighted light red rectangle
(left) represents a thin slab near the solid interface, light yellow
(middle) corresponds to bulk-like slabs and light green (right)
represents a thin slab near the vacuum interface. See text for
details. (Figure adapted from [47])

will refer to as the 𝑧-direction. The other dimensions are
reduced under the assumptions of sufficient symmetry. In
the presence of an interface (see e.g. fig. 2), we assume 𝑧
to be interface-orthogonal. This effectively 1D-system can
then be cut into smaller slices of thickness 𝐿. We will refer
to the mean time that a particle starting within the slab
continuously remains within the slice as lifetime or 𝜏. The
goal is to determine the mean local diffusion coefficient
⟨𝐷⟂⟩ within a slice based on observed particle lifetimes
within the slice. More complex extensions than a 1D-system
are possible but beyond the scope of this work.

To account for molecular flexibility and to establish a link
between 𝜏EPM and ⟨𝐷⟂⟩, we introduce a second coordinate
𝑠. This new coordinate denotes the offset from the position 𝑧,
such that the particle is observed at 𝑧+𝑠 due to its additional
modes of transport, either induced by structural fluctuations
or by coordinated interactions with the environment. Consid-
ering that particles, as well as particle clusters, are of finite
size, we limit 𝑠 by a maximum absolute amplitude of the
displacement 𝑑mol. The precise value of 𝑑mol depends on
the system and particle type. The time-dependent probability
distribution 𝑝 on the space of configurations as described in
[57] is then extended to feature the new diffusive coordinate
𝑠 as 𝑝(𝑧, 𝑠, 𝑡).

In the EPM, a particle’s state is therefore represented by

(𝑧, 𝑠) ∈ [𝑧𝑖 − 𝑑mol, 𝑧𝑖 + 𝐿 + 𝑑mol] × [−𝑑mol,+𝑑mol]

with the particle being observed at 𝑧′ = 𝑧+𝑠. As the position
𝑧′ now needs to be located within the slice instead of 𝑧, the
precise restriction on allowed and considered configurations
amounts to 𝑧′ ∈ [𝑧𝑖, 𝑧𝑖 + 𝐿].

Table 2
Model assumptions for the Extensive Particle Model (EPM):
Extensive Particle Model domains, parameters and assump-
tions for the bulk and LV interface slabs respectively. (BC:
Boundary condition, 𝑅lim: lower bound for 𝑅)

Slab type Bulk (B) Liquid-Vacuum (LV)

𝐷⟂(𝑧) 𝑐𝑜𝑛𝑠𝑡 𝑐𝑜𝑛𝑠𝑡

Domain -d 0 d L-d L L+d

d
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m
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𝑧-BC 𝑧𝑖 absorbing absorbing
𝑧𝑖 + 𝐿 absorbing reflective

𝑠-BC ±𝑑mol reflective reflective

𝜈 𝐷mol∕𝐷⟂

𝑞 𝑑mol∕𝐿

𝑅lim [max (1 − 2𝑞, 0)]3

ν =Dmol/D⊥

1
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Figure 3: The universal correction factor 𝑅(𝜈, 𝑞): Correction
factor 𝑅(𝜈, 𝑞) obtained from numerical solutions of eq. (4),
plotted for values 𝜈 ∈ [0.01, 100], 𝑞 ∈ [0, 1.1]. Cross-sections
along the 𝜈- and 𝑞-axis respectively are provided in fig. A10

For a bulk-like slab, where the particle can exit on
both sides, the domain takes a parallelogram-shape. Ab-
sorbing boundary conditions are applied at the tilted 𝑧-
direction boundaries with reflecting boundary conditions in
𝑠-direction (see table 2). For a slab at an interface with
the solid or vacuum (see also [57]), the particle cannot be
at a 𝑧-position behind the interface, so the parallelogram-
shaped domain gets one corner cut off, and the reflecting
boundary conditions are extended to the boundary towards
the interface, as visualised in table 2.

To be able to model the dynamics of the displacement
𝑠, we assume that the motion in 𝑠-direction can be described
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Figure 4: The Local Width Reduction (LWR) method and its applications: (a) Visualisation of the LWR method to obtain
𝐷⟂ within a slab of thickness 𝐿 = 𝐿0 without prior knowledge of the deformation parameters 𝐷mol and 𝑑mol by measuring mean
lifetimes 𝜏𝑖 for successively thinner and thinner slices of thicknesses 𝐿𝑖 ≤ 𝐿. (b) Lifetime according to SPM for a particle with
same diffusion coefficient 𝐷 (orange line, dashed), measured lifetimes 𝜏𝑖 (blue dots) and the EPM fit (blue line, solid) and (c)
rescaled plot of 𝜏 normalised by the expected slice thickness dependence.

via a diffusive and drift-free process, only introducing an ad-
ditional deformation diffusion coefficient 𝐷mol. We further-
more assume that 𝐷mol depends on the particle type and the
position of the slab but is constant across an individual slab.
Consistently with the basic assumptions of the SPM [57],
we again choose a uniform density distribution across the
phase-space domain as the initial condition of our system.
We then arrive at the following PDE:

𝜕𝑡𝑝(𝑧, 𝑠, 𝑡) = 𝜕𝑧(𝐷⟂(𝑧)𝜕𝑧𝑝(𝑧, 𝑠, 𝑡))+𝐷mol𝜕
2
𝑠 (𝑝(𝑧, 𝑠, 𝑡)), (4)

which we solve up until the long time limit. At this point only
one last mode of the eigenfunctions with exponential decay
remains, which we then extrapolate.

The tilted shape of the phase-space, and its boundary
conditions make a general analytical solution to this PDE
inaccessible, but, based on a scaling argument, the degree to
which 𝜏EPM changes compared to 𝜏SPM should only depend
on the relative scales of disturbances, i.e.

𝜈 =
𝐷mol
⟨𝐷⟂⟩

and 𝑞 =
𝑑mol
𝐿

.

Here the diffusion ratio 𝜈 gives a notion of the rapidity of
the molecular degrees of freedom compared to molecular
translations, while the length ratio 𝑞 expresses the amplitude
of the motion of the molecular centre of mass due to internal
fluctuations relative to the slice size.

We can thus write 𝜏EPM analogously to eq. (1) with
an additional term 𝑅(𝜈, 𝑞) denoting the relative change of
lifetimes:

𝜏EPM = 𝑅 (𝜈, 𝑞) × 𝑐slab
𝐿2

⟨𝐷⟂⟩
. (5)

Here 𝑐slab again depends on the type of slice that is being
investigated (i.e. 𝑐LV = 1∕3 and 𝑐B = 1∕12), and 𝑅(𝜈, 𝑞) is
the correction factor, which can be cast into a universal form,
as discussed below.

3.1. The correction factor 𝑅(𝜈, 𝑞)
The correction factor can be obtained by numerically

solving eq. (4) for a fixed choice of 𝜈 and 𝑞 (e.g. by setting
𝐷⟂ = 1,𝐿 = 1 and𝐷mol = 𝜈 and 𝑑mol = 𝑞). Specifically, we
first calculate 𝜏EPM(𝜈, 𝑞) by solving eq. (4) with appropriate
boundary conditions. We then divide the result of eq. (5) by
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the prediction of eq. (1) which yields 𝑅(𝜈, 𝑞) (see fig. 3).
Notably, this presented correction factor 𝑅(𝜈, 𝑞) is universal,
i.e. it does not have to be recalculated for different system
setups but only once for each relative scale of disturbances.

Since 𝐿 is determined by the slicing, it is sufficient to
determine 𝐷mol and 𝑑mol in any system to be able to derive
𝐷⟂ from eq. (5). More specifically, With all parameters but
𝐷⟂ in eq. (5) being known, we effectively fix 𝑞 as a parameter
of 𝑅 and only leave 𝜈 to vary, exploring a slice 𝑅(𝜈)𝑞 of
the universal correction function 𝑅(𝜈, 𝑞) (consult the github
project page [https://github.com/puls-group/diffusion_in_
slit_pores], the associated Zenodo archive [67] and the
notes in appendix H for tabular data on 𝑅B and a script to
calculate further values). The problem then boils down to
finding the right value of 𝐷⟂, such that the right hand side
of eq. (5) (i.e. 𝑐𝑜𝑛𝑠𝑡×𝑅(𝜈)𝑞∕⟨𝐷⟂⟩) coincides with the mean
lifetime 𝜏 of a molecule in that slab, measured in simulations
or experiments.

The obtained diffusion coefficient should not differ sig-
nificantly from the results of the SPM as long as the am-
plitude of the relative centre of mass displacement is small
(𝑞 → 0). Likewise, no effect should be observed if the
motion of the centre of mass due to structural fluctuations
occurs at time scales that are negligible compared to the time
scale for the translation alone (𝜈 → 0). Hence:

𝑅(𝑥 → 0, 𝑞) = 𝑅(𝑥, 𝑞 → 0) = 1 (see fig. 3),

which is typically assumed by existing approaches as well as
the SPM [57].

In the limit of fast structural fluctuations (𝜈 ≫ 1),
the time scales decouple. Any displacement in 𝑠 can be
considered instantaneous on the time scale of diffusion in
𝑧. The molecular deformations can cause particles in certain
states to leave the slab (gray regions in domains in table 2),
effectively reducing the slab width. As a result, we are thus
left with the following lower bound for the high-𝜈-limit (see
appendix B for the derivation):

𝑅𝐵(𝜈 ≫ 1, 𝑞 ≤ 0.5) ≥ (1 − 2𝑞)3.

At 𝑞 ≥ 0.5, the particle’s centre of mass can and will be
driven out of the entire slab by deformation on a faster time
scale than via diffusion in 𝑧 (the shapes in table 2 become
completely grey). In this case, we can only resolve 𝐷mol and
not 𝐷⟂ as the dominant motion. The asymptotic behaviour
thus changes to:

𝑅𝐵(𝜈 ≫ 1, 𝑞 ≥ 0.5) ∝ (𝜈−1).

As mentioned previously, it is a simple task to resolve
𝐷⟂ as long as 𝐷mol and 𝑑mol are known. However, it is
often a challenge to determine 𝐷mol and 𝑑mol in a molecule
with many degrees of freedom all interacting with the en-
vironment. An additional issue is the coupling between
translations and rotations.

3.2. Systematic coarsening by slice width
reduction

To circumvent the problem of determining ⟨𝐷⟂⟩ at finite
but unknown 𝐷mol and 𝑑mol, we resort to gradual coarsening

of the structural fluctuations by increasing their relative
significance, in a process that we refer to as Local Width
Reduction (LWR). Specifically we continuously change 𝑞,
while keeping 𝜈 fixed by systematically reducing the slab
width as displayed in fig. 4a. We start from a large initial
𝐿 = 𝐿0 centred at 𝑧 = 𝑧𝑐 . The width 𝐿0 should be at least
comparable to 𝑑mol, but small enough such that 𝐷mol, 𝑑mol
and 𝐷⟂ are still reasonably constant within the slab. We then
determine the sequence of the life times 𝜏EPM(𝐿𝑖) for smaller
and smaller slabs centered at 𝑧𝑐 (i.e. [𝑧𝑐 −𝐿𝑖∕2, 𝑧𝑐 +𝐿𝑖∕2],
with 𝐿𝑖+1 < 𝐿𝑖 ≤ 𝐿0,∀𝑖 ≥ 0, see fig. 4 b). In doing
so we continuously change the scale 𝑑mol of displacement
relative to the scale of the slab 𝐿 in the measured sequence
of lifetimes. Finally, the 𝜏EPM(𝐿𝑖) are used to calculate the
deviations from the scaling predicted by the SPM, i.e.

𝜏EPM(𝐿𝑖) →
𝜏EPM(𝐿𝑖)

𝐿2
𝑖

(see fig. 4c) as this deviation is mainly determined by 𝑅.
In doing so, we generally only need to apply the method to
bulk-like slabs, where 𝑖 ≥ 1, as only in the initial slicing
of thickness 𝐿0 the slice can be immediately adjacent to an
interface, therefore only requiring the calculation of 𝑅𝐵 .

The set of
𝜏EPM(𝐿𝑖)

𝐿2
𝑖

is then fitted with the universal curve for 𝑅(𝜈, 𝑞) (fig. 3)
with 𝐷⟂(𝑧𝑐) as well as 𝑑mol(𝑧𝑐) and 𝐷mol(𝑧𝑐) as fitting
parameters. Determining the appropriate line in the space of
𝑅(𝑞)|𝜈 with only 𝑞 as a free parameter among the 𝜏EPM(𝐿𝑖),
now sets 𝜈, and eventually 𝐷mol(𝑧𝑐), 𝑑mol(𝑧𝑐) thus fixing
𝐷⟂(𝑧𝑐) (see appendix C for details on the chosen fitting
procedure).

Performing the Local Width Reduction (LWR) scheme
in different slabs throughout the system not only provides us
with the spatially resolved diffusion coefficient for transla-
tion but also gives us insights into the evolution of molecular
deformation processes as a function of the distance from a
confining wall.

Depending on the chosen parameters for a simulation,
there are lower and upper limits to the values of 𝜏 that we can
reliably resolve from simulation data. Within this window
of possible values, there need to be sufficiently many data
points for the fit of 𝑅 to yield reliable results. This needs
to be taken into account for the setup of the simulation, but
also the initial choice of the slice thickness 𝐿0 as it will limit
the possible spatial resolution of the diffusivity 𝐷⟂(𝑧). This
resolution has, in our experience, proven to be significantly
higher than what can be achieved by standard methods for the
determination of spatially dependent transport coefficients,
e.g. the Einstein method applied to parallel diffusion in a
sliced system.
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Table 3
Bulk IL self-diffusion coefficients accounting for extensive
particles: Here, 𝑛 denotes the number of carbon atoms in
the alkyl chain of the cation. MSD data as from table 1 are
compared to data from the EPM fit results obtained via LWR,
using slices of initial thickness of 𝐿0 = 1 nm. The error EPMErr
is the deviation of the EPM relative to the MSD as in eq. (3).
All diffusion constants are in units of 10−7 cm2 s−1.

𝐷+

𝑛 MSD EPM EPMErr

2 3.5 ± 0.1 3.5 ± 0.1 0%
4 2.6 ± 0.1 2.8 ± 0.1 7%
6 1.4 ± 0.1 1.6 ± 0.1 14%
8 0.8 ± 0.1 1.2 ± 0.1 50%
10 0.7 ± 0.1 1.0 ± 0.1 40%

𝐷−

𝑛 MSD EPM EPMErr

2 2.0 ± 0.1 2.1 ± 0.1 5%
4 1.7 ± 0.1 2.0 ± 0.2 17%
6 1.1 ± 0.1 1.3 ± 0.1 18%
8 0.7 ± 0.1 1.0 ± 0.1 43%
10 0.6 ± 0.1 0.9 ± 0.1 50%

4. Validation of the EPM by characterising
diffusion in bulk ILs
We evaluate the performance of the EPM using molecu-

lar dynamics (MD) simulations of bulk imidazolium-based
ionic liquids (IL), with MSD diffusivity data as seen in
table 1 being used as a reference. To calculate the predictions
of the EPM, non-overlapping and adjacent slices are chosen
with a fixed slice thickness 𝐿. Here we specifically use the
same thickness as employed for the SPM (table 1), covering
the entire simulation box. The diffusion constant 𝐷⟂ is
calculated in each slice independently, then the values are
averaged and the standard deviation is calculated across all
slabs for comparison with 𝐷MSD.

Notably, the EPM results for 𝐷⟂ become consistent with
those obtained from the MSD (table 3). The error is less than
5% for short chains and about 50% for the largest cations.
The latter can be attributed to limitations of collapsing all
internal degrees of freedom of long cations to a single degree
of freedom modelled in the EPM. The error is exacerbated
by the decrease in the absolute values of the diffusion con-
stant, making small absolute errors possibly induced by the
numerical fitting method relatively more significant. This
trend is also seen in the uncertainty of the diffusion constant
calculated from the MSD, which also increased to 15% for
larger chains due to higher viscosity.

An added benefit of the EPM is its capacity to re-
solve 𝐷mol. Actually, several experimental studies pointed
out the existence of two modes of diffusion [68]. A no-
table example comes from hf-BILs, a series comprised
of bis(mandelato)borate anions and dialkylpyrrolidinium
cations with long alkyl chains (𝑛 = 4−14). In these systems,
two diffusion constants were measured for ILs [69]. The

Table 4
Bulk IL self-diffusion coefficients and deformation parame-
ters: Self-diffusion coefficients 𝐷⟂ and deformation parame-
ters 𝐷mol, 𝑑mol from MD simulations for cations and anions
(superscript +∕−) obtained from EPM model fit results via
Local Width Reduction analysis (LWR). The LWR results were
extracted from slices of initial thickness of 𝐿0 = 1 nm in the
pure bulk IL systems with subsequent averaging and error
calculation across slices. (diffusion in units of 10−7 cm2 s−1, 𝑑mol
in units of 10−2 nm)

Cation
𝑛 𝐷+

⟂ 𝐷+
mol 𝑑+

mol

2 3.5 ± 0.1 18.2 ± 0.1 9.1 ± 0.1
4 2.8 ± 0.1 17.2 ± 0.1 8.9 ± 0.1
6 1.6 ± 0.1 16.4 ± 0.1 8.6 ± 0.1
8 1.2 ± 0.1 15.5 ± 0.1 8.2 ± 0.1
10 1.0 ± 0.1 14.7 ± 0.1 8.6 ± 0.1

Anion
𝑛 𝐷−

⟂ 𝐷−
mol 𝑑−

mol

2 2.1 ± 0.1 18.5 ± 0.1 9.6 ± 0.1
4 2.0 ± 0.2 18.4 ± 0.1 9.1 ± 0.1
6 1.3 ± 0.1 17.4 ± 0.1 9.0 ± 0.1
8 1.0 ± 0.1 17.6 ± 0.1 9.1 ± 0.1
10 0.9 ± 0.1 18.3 ± 0.1 9.3 ± 0.1

slower mode was similar to the diffusion of shorter alkyl
chains, while a second an order of magnitude faster mode,
sensitive to local viscosity, could be resolved but only for ILs
with long chains (𝑛 > 10). The result was associated with
the appearance of the bi-continuous fluid phase. Our results
suggest that this fast mode behaves consistently with 𝐷mol.
As in these experiments, the here measured 𝐷mol is sensitive
to viscosity and decreases with increasing 𝑛 (see table 4).
Notably, the ratio 𝜈 = 𝐷mol∕𝐷⟂ in our simulations increases
from about 5 at 𝑛 = 2 to over 20 at 𝑛 = 10. This explains the
reason for the observation of the fast mode only for ILs with
long cations. At this point the fluctuations of the ion centre
of the mass due to inter- and intramolecular interactions
clearly occur on different time scales than the diffusive
translations, and can distinctly be resolved. We show that the
fast mode, still exists at low 𝑛, prior to the appearance of the
bi-continuous phase. However, without explicit modelling
as performed herein, it cannot be delineated from the slow
translations.

We conclude that the EPM proves generally capable
of correcting for the limitations of the SPM. It provides
meaningful absolute values of the translational diffusion
coefficients, and captures the intricate dynamics of internal
transport properties of complex liquids including ILs, as
previously suggested in experiments. This establishes the
EPM, in combination with the LWR, as a simple but essential
method for understanding diffusive transport, well beyond
the SPM and general Markov-State-Models used in the past.
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neutral hydroxylated sapphire surface

[C2Mim][NTf2] [C4Mim][NTf2] [C6Mim][NTf2] [C8Mim][NTf2] [C10 Mim][NTf2]

 large vacuum ~ 80nm

Figure 5: The SLV system configuration: Visualisation of the IL liquid films after equilibration on top of the hydroxylated sapphire
surface below a 80 nm slab of vacuum for the different ILs [C𝑛Mim][NTf2] (𝑛 = 2, 4, 6, 8, 10). Clearly visible is the increasing film
thickness with the increase in cation chain length. (Figure adapted from [47])

5. Anisotropic diffusion of ionic liquids in
confined geometries
Equipped with the proof that the EPM/LWR approach

can resolve the self-diffusion coefficients of anions and
cations in bulk systems of our considered ILs, we can now
proceed to investigate the relation between ion structuring
and the diffusive ion transport in IL thin films. This has been
a challenging task experimentally and theoretically, because
there is no clear separation of length scales between the
molecular size of ions, the thickness of the film, and the
effective interaction potentials between the solid phase and
the liquid [25].

In the following, we want to illustrate the novel capabili-
ties of the lifetime-based model for complex particles (EPM)
in terms of resolving anisotropic diffusivities close to inter-
faces but also in the transitional region. We will additionally
discuss novel insights into the spatially dependent nature of
internal degrees of freedom in the vicinity of interfaces.

5.1. MD simulations of thin IL films
We first simulate thin IL films, following a previously

established protocol [12]. Accordingly, we position 1800
[C𝑛mim][Ntf2] ion pairs above a hydroxylated alumina slab
in a monoclinic simulation box (see Appendix D). Since
the alumina slab is identical in all systems, the thickness of
the IL film increases with the size of the cation (fig. 5). To
prevent 𝑧-replicas’ effects on the formation of interfaces, a
80 nm thick vacuum slab is placed above the liquid-vacuum
interface. Following the annealing protocol in which the
solid-liquid (SL), and the liquid-vacuum (LV) interfaces are

fully formed, a 200 ns run is performed and used to build
diffusion profiles (see appendix D for details).

In focusing on the interface normal number density
(INND) profiles of the ILs, we observe stable layering
behaviour at the edges of the confinement/interfaces to-
wards both solid and vacuum (fig. 6 c and f, respectively).
This matches well with AFM measurements of force-vs-
separation profiles at these interfaces, where there is a
characteristic dominant structure scale associated with each
respective type of interface depending on local particle
organisation [70]. The higher order structure is also observ-
able in the internal deformation parameters visualised in
Appendix fig. A12c and f, where we see the displacement
amplitude 𝑑mol drop towards either interface with a different
characteristic range. We therefore expect to observe different
effects of these distinct dominant structures on the IL
diffusivity close to the respective interfaces.

5.2. Application of EPM
We resolve the self-diffusion of the ILs with higher

resolution at the interfaces compared to the bulk and connect
our observations with already established understanding of
the structuring properties of interfacial ILs.

In the IL film systems, slices in the central bulk-like
region are generally chosen to be 𝐿 = 1 nm thick, where
possible. In the region close to the solid- and vacuum-
interfaces respectively, smaller slices up to a lower limit of
𝐿 ≥ 0.3 nm for the perpendicular and 𝐿 ≥ 0.4 nm for the
parallel direction were placed to again increase spatial reso-
lution due to lower expected particle mobility with similar
constraints as for the water system in [57]. The spatially
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Figure 6: Particle transport in an S-L-V ionic liquid film: (a) Interface-parallel 𝐷∥ and (b) -perpendicular self-diffusion 𝐷⟂ for
the IL SLV systems with the centre of the liquid film of thickness 𝑧𝑠𝑦𝑠 shifted to zero. (c,d,e) Plots of the normalised interface
normal number density (INND) (c), normalised parallel diffusion 𝐷∥ (d) and perpendicular diffusion 𝐷⟂ (e) unscaled in 𝑧 direction,
zoomed in on the SL-interface located at 𝑧 = 0. (f,g,h) Plots of the normalised INND (f), normalised 𝐷∥ (g) and normalised 𝐷⟂
(h) scaled with the film thickness 𝑧sys in 𝑧 direction, zoomed in on the LV-interface, that is located at 𝑧∕𝑧sys = 1.0 respectively. In
all plots, dashed lines refer to cations, solid lines to anions and dotted to reference bulk values. Different systems ([C𝑛Mim][NTf2]
for 𝑛 = 2, 4, 6, 8, 10) are distinguished via their colours . 𝐷∥ is normalised with respective bulk system MSD value, 𝐷⟂ with the
respective bulk system value obtained via EPM/LWR (see table 3) and INND is normalised with the average bulk INND value.
For the MSD analysis, 𝐿 is in the range 0.4 nm to 1.0 nm, for EPM/LWR the range of 𝐿 is 0.3 nm to 1.0 nm with smaller values
closer to the interface to resolve the features of the particle mobility there more accurately.

resolved diffusion profile parallel to the interface is obtained
from the MSD, while the perpendicular component is ob-
tained by applying the EPM in conjunction with LWR (fig. 6
a and b, respectively). Both are normalised by diffusion
constants as measured in the corresponding bulk liquids
with the respective methods (see table 3), to account for the
systematic error of the 𝐷EPM.

Despite differences between systems, the 𝐷-profiles for
anions and cations within the same system are almost iden-
tical. This was observed previously for interface-parallel
diffusion for 𝑛 = 2 [12]. Such behaviour points towards
the importance of the formation of ion pairs and other
forms of IL internal structures due to the strong anion-cation
Coulomb interactions [60, 61].

Throughout the system 𝐷∥ normalised to the bulk value
is consistently above the normalised𝐷⟂ both always exhibit-
ing a slight yet persistent gradient throughout the central
region of the film. Interestingly the structure factor in that
compartment is the same as in the bulk ILs [12], however, as
seen in confined water,[57] dynamic properties seem to show
relaxation on significantly longer length scales. The trends
observed in the translational diffusion are systematically
recovered by 𝐷mol(𝑧) (see Appendix fig. A12 for profile).

Perpendicular components reach the reference bulk dif-
fusion near the LV interface, while parallel components
attain it closer to the solid interface. As a result, increased
average parallel mobility of ions within the film is ob-
served compared to the bulk IL. Such an effect of confine-
ment has been reported previously, for example in phospho-
nium bis(salicylato)borate ILs in Vycor porous glass [69], or
[C4mim][Ntf2] in mesoporous carbon [71] for both the slow
and the fast mode of diffusion. Our result suggests that in
contrast to the systems studied herein, filled pores will not
show an increase in average diffusivitiy as also reported in
our prior publication [72]. Instead the increase in mobility
relative to the bulk reference is associated with the presence
of the vacuum interface.

5.3. Estimating the influence of drifts at interfaces
Due to the potential of mean force acting between the IL

and interfaces, which results in the INND, one can expect er-
rors in the perpendicular diffusion coefficient because of the
omission of potential gradients in the modelling of the EPM.
Hence, it is important to discuss if the observed behaviour
of locally varying diffusivity is significant or a consequence
of a systematic error of ignoring the drift arising from the
potential of mean force between the IL and the interfaces.
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Figure 7: Characteristic results of applying the drift-correction to 𝐷⟂ of 𝑛 = 2 and 𝑛 = 10 systems: (Left) Results for 𝑛 = 2,
(Right) Results for 𝑛 = 10. (Top row) INND of cations (red/dashed) and anions (blue/solid) of ILs at the solid and vacuum
interfaces relative to INND in bulk similar to fig. 6. (Bottom row) 𝐷⟂ results according to the EPM for cations (red/dashed)
and anions (blue/solid) relative to their bulk values as well as the results when applying the SPM+d correction factor 𝐾(𝛾) (see
main text for details). Virtually no effect of the first-order drift correction can be observed at the SL-interface, whereas at the
LV-interface, the ultimate increase in 𝐷⟂ can be attributed to the drift of the steep effective potential at the vacuum interface. The
penultimate bump in diffusivity on the other hand cannot be attributed to the statistical drift, making it a significant observation.

As derived in our previous publication [57], we can make
an approximation of the combined effect of the extensive
particle dynamics and the impact of drift, by multiplying the
result of the EPM/LWR procedure by the correction term
𝐾(𝛾) of the SPM+d approach (eq. (2)) effectively resulting in
an EPM+d approximation. As described previously [57], the
first order potential gradient can be extracted from the INND
profiles. By applying this approximate first-order correction
to the results presented in fig. 6, we conclude that, for
all systems, the consistent oscillation patterns of particle
mobilities at interfaces are a robust finding (see fig. 7 for
detailed results of 𝑛 = 2 and 𝑛 = 10). A similar result
has previously been found for water confined to a slit pore
in our precursor publication [57]. We therefore arrive at the
conclusion, that such oscillations appear for a wide range of
simple to complex fluids

The comparison of the EPM result with and without the
drift correction at the SL-interface does not show any signif-
icant change, meaning that the fluctuations clearly cannot be
attributed to a first-order correction due to drift. Instead the
observed oscillations are a direct consequence of the strict
layering on top of solid interfaces. Importantly, while there
is coupling of diffusivity to density oscillations, this effect is

highly non-trivial, as the extrema of the two are not directly
correlated (see fig. 8).

The situation at the LV-interface is more delicate. Here,
correcting for the drift shows that the ultimate increase of
the diffusion coefficient 𝐷⟂ in the very interface layer may
be a spurious effect and that the diffusivity is overestimated
by the EPM in that slab. Still, the drift-correction leaves at
least the penultimate mobility bump of 𝐷⟂ as a significant
result (see fig. 7).

5.4. Diffusion at solid-liquid interfaces
Equipped with the understanding that the EPM provides

a good estimate for the diffusion profile at the SL interface,
we can proceed to analyse interface-induced changes in
the diffusion profile in more details. The effect of the SL
interface is best observed in fig. 6 (c,d,e), where the liquid
density profile is shown together with both 𝐷∥ and 𝐷⟂ as a
function of the distance from the pore wall. The position of
the solid surface was fixed by the most extreme position of
the centre of mass of an ion during the entire production run,
all measured relative to the centre of mass of the entire film.

All density profiles exhibit several characteristic oscil-
lations as a function of the distance from the solid support
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Figure 8: Visualisation of the local extrema in INND and
𝐷⟂ for the solid interface of 𝑛 = 2: Zoom on the SL-
interface of 𝑛 = 2 in fig. 6 to highlight the extrema in
INND and 𝐷⟂ not coinciding. (Top) INND profile of cation
(red/dashed) and anion (blue/solid) normalized by the bulk
density. (Bottom) 𝐷⟂ profile with the same color-coding based
on the EPM results without drift correction due to little to
no correction at the SL interface. Vertical lines are centred
on the local maxima/minima of the cation INND as a visual
guide. The extrema of the density profile do not all coincide
with extrema of 𝐷⟂, rendering the relation highly non-trivial.
Similar observations are true for the other systems.

as observed in other publications [43, 44]. Each layer cor-
responds to a peak in density (minimum in the effective
IL-alumina interaction potential), while the dips of low
density can be converted to free energy barriers for ions
crossing between layers. While the absolute amplitude and
the number of these oscillations is system dependent, their
relative scale and frequency especially in the first layers is
preserved as seen from the overlap in fig. 6c. As has been
shown in our previous work [12], the reason for this is the
requirement of the electro-neutrality of each layer, the size
of which is in principle set by the anion and the imidazolium
rigid ring, common to all systems.

As seen before in water-filled pores [57], 𝐷⟂ strongly
anti-correlates with local normal density with its own os-
cillations superimposed over the overall drop-off towards
the solid wall (fig. 6e). Within the barriers the particles are
mostly observed crossing between adjacent layers and the
𝐷⟂ is fast. Within the layers the stronger particle-particle in-
teractions due to increased local density reduce ion mobility.

Due to a similar coupling with the local density 𝐷∥ also
experiences a reduction in mobility (fig. 6d). This reduction
is less intense than 𝐷⟂ because there is no confining poten-
tial for excursions along this direction of motion. However,
the coupling with density is much stronger than in water,
due to more significant inter-ion interactions. This overall
reduction in particle mobility as well as the loss of mobility
in internal degrees of freedom (see Appendix fig. A12b and
c) agrees with experimental findings on imidazolium based
ILs at the solid-liquid interface in silica pores [73].
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Figure 9: Visualisation of the frozen layer on top of the solid
for 𝑛 = 4 and 𝑛 = 10: Residence probability distribution of
anions (blue) and cations (red) in the frozen layer (first ≈ 1Å
on top of the SL interface) and the adjacent layer (next 5Å)
for 𝑛 = 4 and 𝑛 = 10. Visualised is the residence probability
for the centre of mass of anions and cations in the layer at
𝑡 = 0 within a 50 ns time window. For both 𝑛 = 4 and 𝑛 = 10,
ions remain mostly static within the observation time, whereas
in the thicker adjacent layer, particles are more likely to move
around and leave the layer. See appendix fig. A13 for data on
𝑛 = 2, 6, 8 (Figure adapted from [47])

Toward the very contact of IL with the alumina wall,
ions make hydrogen bonds with the otherwise neutral solid
[41], enabling the formation of an electro-neutral, nearly
frozen layer of ILs. This attraction organises the ions into
electro-neutral chequerboard patterns (see fig. 9) [42], from
which the ions are unable to escape. Consequently, 𝐷⟂ is
reduced by more than two orders of magnitude compared to
the reference bulk value, despite the strong drop in density.
There is also a significant drop in 𝐷∥, which however returns
to the reference value at the very interface. This result
probably stems from the lower resolution of the MSD at the
interface compared to the EPM/LWR, which leads to the
MSD averaging the very first layer as well as first inter-layer
space therefore over-estimating particle mobility of interface
ions.

Actually, both, the parallel and the perpendicular com-
ponent are highly suppressed, which can be seen from the
tracks of the positions of ions’ centres of mass over 50 ns
(fig. 9). Because of hydrogen bonds, ions basically move
only sporadically, which is evident from individual non-
overlapping islands for each ion at the contact with the in-
terface. This is also the reason why this layer is not included
in the EPM analysis (see figs. 6 and 7). These results are
consistent with the ultra-slow dynamics observed recently
for 𝑛 = 4 at mica surfaces [74], when, however, the attraction
was provided by Coulomb interactions.

5.5. IL diffusion at liquid-vacuum interfaces
Moving on to the LV interface, we observe an entirely

different behaviour. In fig. 6 (f,g,h), the interface effects
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scale with the liquid film thickness 𝑧sys. This stems from
the fact that the cations (dashed lines in fig. 6 f) at the
LV interface orient their non-polar alkyl chains towards
the vacuum similar to other imidazolium-based ILs in MD
studies [75]. This creates a shielding electro-neutral surface
[12].

Anions, on the other hand coordinate with the cation
rings below the alkyl chains (full lines in the INND profiles
(fig. 6 f). Due to this orientation and alignment, the scale of
the first molecular layer is determined by the length of the
cations’ alkyl chain. The latter also controls the thickness of
the overall liquid phase at a constant ion pair count, hence the
characteristic length scale for ordering at the LV interface,
and the scaling of 𝐷∥ (fig. 6 g) and 𝐷⟂ (fig. 6 h) in this
region.

The LV interface affects the diffusivities the most in the
isolation region of the first molecular layer. Even after taking
into account the drift (see fig. 7), both 𝐷∥ and 𝐷⟂ increase
significantly compared to the bulk, while for 𝐷∥ up to two
orders of magnitude changes are observed. This effect gets
stronger with the increasing chain length as the region with
statistical absence of ions’ charge centres thickens.

Different behaviours of 𝐷∥ and 𝐷⟂ are observed in the
charged region of the first molecular layer, which coincides
with the peak of liquid INND. Here, there is an up to 10%
increase of overall liquid density despite an up to 20% lower
cation density. In this region𝐷∥ changes slope and continues
to drop towards the solid following a rather constant gradient
that is surprisingly long-range.

To the contrary, from the interface inward, after its drop-
off towards the vacuum when accounting for the drift, 𝐷⟂
first has a penultimate peak in all systems almost coinciding
very closely with the maximum in total INND. This peak
is likely promoted by the anisotropic interactions as well
as charge and density changes in the region, as symmetry
breaking local structure in the vicinity of colloids in solution
has also been proven experimentally to induce anisotropic
Brownian diffusion contrary to an unstructured background
[76]. However, the overall effect of the LV interface on
𝐷⟂ seems to be rather short-ranged as already in the sec-
ond molecular layer, the ions experience the same particle-
particle-interactions in perpendicular direction as elsewhere
in the bulk liquid as also demonstrated by a quick recovery
of the bulk deformation characteristics (see fig. A12e and f).

6. Discussion and Conclusions
In this work, we introduce a novel technique for quanti-

tatively analysing anisotropic diffusion in confined geome-
tries, focusing on complex liquids, specifically ionic liquids
(ILs). We demonstrate that internal molecular degrees of
freedom can lead to additional spatially dependent modes
of transport, comparable to self-diffusion, which have been
overlooked in previous diffusion analyses. The latter include
Markov-State-Model spectrum calculations [77], considered
the most adaptable tool for studying transport in confined

geometries [78], as well the Simple Particle Model which
we developed in the prequel to this paper [57].

Our novel approach presented here overcomes the limita-
tions of these models. Specifically, the here presented Exten-
sive Particle Model (EPM) combined with Local Width Re-
duction (LWR) addresses the challenge of flexible molecules
or particles deforming, fluctuating, and diffusing in con-
finement. Consequently, the EPM in conjunction with drift
corrections represents a significant advancement compared
to previous efforts in this field. It not only considers spatial
variations in diffusivity but also accounts for the coupling
of potentially spatially dependent degrees of freedom with
translational transport processes, and underlying potentials.
This improvement distinguishes the EPM from prior ap-
proaches that either neglect the impact of these coupled
processes or assume strict separability [77, 79].

In applying the EPM to the complex transport processes
in bulk ILs we have first proved its validity. Based on these
results, we are now able provide an explanation for multiple
different modes of transport previously detected in NMR
experiments [68, 69]. Specifically, we can explain why the
ability to detect these modes has been dependent on the
length of the cation chain of the IL.

After validating the EPM, we have applied it to thin
films of imidazolium-based ILs. By exploring the correction
that arises due to drifts induced by effective interaction
potentials with the interfaces [57], we show that the EPM
alone provides an excellent estimate of the diffusion profiles,
particularly at the solid-liquid interface. The exception is
the last molecular layer at the LV interface, where drift
corrections may be significant.

We concede that our drift correction is a simplified
approach applied directly to the translational degree of free-
dom, as derived in SPM [57]. However, this is precisely
where we expect the majority of the effect. It is possible,
however, to incorporate the drift into the EMP starting from
an adapted Smolouhowsky equation. However, proceeding
with this calculation would affect the universal nature of the
correction factor 𝑅, and significantly increase the complex-
ity of application of the method. In the current version, a
balance between the accuracy of the model and the reliability
of its implementation is potentially achieved.

An obvious limitation of our here established approach
similar to the SPM [57] is its requirement for a subspace that
can be reduced to a 1D representation for 𝐷⟂ to be resolved.
This is a restriction compared to other techniques, but it can
be overcome by extending the model to a square or even a
cube for possible grid-like analysis of diffusion. However,
such an extension would require clearly establishing the role
of coupling with different directional processes, which may
be a challenge.

In using the EPM for confined ILs, we provide a deeper
understanding of the coupling of the ions’ translational diffu-
sion with density stratification, the attractiveness of the inter-
face, the spatial charge distribution, and additional internal
degrees of freedom. Specifically, we clearly demonstrate a
nontrivial link between the anisotropy in diffusivity and the
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anisotropic structuring of ILs at the contact with vacuum
and the solid support. We, furthermore, show different char-
acteristic scaling behaviour of parallel and perpendicular
diffusion coefficients at either of the two types of interfaces.
At the interface with the solid, the scaling is imposed by the
electroneutrality of each layer and the cation ring diameter,
while on the vacuum interface, the size of the hydrophobic
cation chain dictates the length scale. Finally, we find that
interfaces may, but need not introduce effects in transport on
a range significantly beyond the ones associated with density
stratification, depending on the direction of transport and the
type of interface. This result likely stems from hydrodynamic
effects, and the effective stickiness of the surfaces in question
[80].

To summarise our progress, this paper and its prequel
[57] establish universal tools that can be easily applied to
study diffusive transport in a broad family of complex bulk
and confined liquids. Using these tools, we can now decon-
volve processes occurring on time scales similar to trans-
lation, and, in a quantitative manner, calculate the spatially
resolved diffusion coefficients parallel and perpendicular to
a pore wall. With necessary scripts publicly available, we
hope these tools will find broad use in studies of molecular
liquids.
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A. Extensive Particle Model
As the SPM proved accurate for the simple water molecule

but insufficient for the more complex IL molecules, a model
for corrections to the simple formula

𝐷 = 1
12

𝐿2

𝜏
(6)

needed to be devised to account for the influence of parti-
cle deformation on the crossing time of particles within a
subspace. We can attribute this to the fact that an additional
imprinted fast deformation movement of the centre of mass
on top of the diffusive motion will lead to the particle
leaving the subspace earlier than by diffusion alone, leading
to a reduced expected lifetime 𝜏′. This reduced lifetime
𝜏′ incorporating the effects of deformation is the one that
can be observed, whereas the formula eq. (6) expects the
non-observable deformation free expected value 𝜏 to be
measurable.

It is therefore essential to find a link between 𝜏′ and 𝐷
along the lines of eq. (6) or – as an approximation – devise a
link between 𝜏 and 𝜏′ such that we can calculate the virtual
value of 𝜏 from the observed value 𝜏′.

To do this, we suggest a simplified model, where we have
one variable 𝑧 describing the position of the reference point
of the particle we are observing in interface-normal direc-
tion, as well as a second variable 𝑠 describing the displace-
ment of the actually observed position of the particle relative
to the reference point. The reference point 𝑧 is assumed
to diffuse freely according to the drift-free Smoluchowski
equation with the variable 𝑠 being confined in absolute value
by an absolute maximum displacement 𝑑 defined by the
geometry/structure of the particle. So we get 𝑠 ∈ [−𝑑, 𝑑] as
a restriction and need to detail how the displacement evolves
over time. Again we choose a diffusive statistical model,
where the displacement 𝑠 statistically performs a diffusive
drift-free motion on the interval [−𝑑, 𝑑] with reflecting
boundaries at 𝑠 = −𝑑 and 𝑠 = 𝑑. The diffusive constant
𝐷mol in 𝑠-direction required for the Smoluchowski equation
needs to be derived from the structure of the particles, ideally
from the same simulation trajectory as the lifetime data. We
then arrive at a total PDE, describing the problem:

𝜕𝑡𝜌(𝑧, 𝑠, 𝑡) = (𝐷𝜕2𝑧 +𝐷mol𝜕
2
𝑠 )𝜌(𝑧, 𝑠, 𝑡) (7)

The relevant aspect here are the remaining boundary condi-
tions and the shape of the domain on which the PDE needs
to be solved. As we observe the position of the particle at
𝑧tot = 𝑧 + 𝑠 and we restrict 𝑧tot ∈ [0, 𝐿], we observe the
domain for an inner slab to be of parallelogram shape (see
table 2) determined by

𝐼𝑑 = {(𝑧, 𝑠)|𝑧 ∈ [−𝑠, 𝐿 − 𝑠], 𝑠 ∈ [−𝑑, 𝑑]} (8)

At an interface slab the option for 𝑧 < 0 is not possible due
to the interface being present, so the domain at an interface
will be given by

𝐼 int𝑑 = {(𝑧, 𝑠)|𝑧 ∈ [max(0,−𝑠), 𝐿 − 𝑠], 𝑠 ∈ [−𝑑, 𝑑]}
(9)

which takes the shape of a parallelogram with one corner cut
off (see again table 2). The boundary condition for the inner
slabs are assumed to be reflecting at 𝑠 = ±𝑑 and absorbing
at 𝑧 = −𝑠 and 𝑧 = 𝐿 − 𝑠.

For the boundary slab, the boundary at 𝑧 = 𝐿 − 𝑠 is
assumed to be absorbing, whereas all others are considered
reflecting as the particles cannot leave the slab there.
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Then we need to again determine the survival probability
𝑝(𝑡) and calculate the mean survival lifetime 𝜏. Unlike in the
previous model attempt, this PDE cannot be solved analyt-
ically on our distorted domain, thus requiring solving via
numerical methods starting from uniform initial probability
distribution on the domain.

We can then compare the lifetime results with our pre-
diction formula of according to the SPM [57], i.e. eq. (1),
to derive an approximate correction for a wide range of
parameters. Refer to the main manuscript for a discussion
of the resulting correction factor 𝑅(𝜈, 𝑞).

B. The universal correction factor 𝑅(𝜈, 𝑞)
B.1. Bulk correction limit at 𝑞 ≤ 0.5

In the case of bulk slabs as portrayed in table 2 we can
make a prediction for the behaviour of 𝑅(𝜈, 𝑞) in the limit
𝜈 → ∞ for 𝑞 ≤ 0.5. Essentially, the fast speed of changes of
configuration (𝐷mol) compared to the spatial translation 𝐷⟂,
i.e. 𝜈 ≫ 1, causes the particles in the grey triangles of the
domain visualised in table 2 to be immediately driven out of
the slice by deformation alone. By this, we lose all particles
that are not in the rectangular (pink) middle section of the
slice. The ratio of these remaining particles is

(𝐿 − 2𝑑mol)2𝑑mol
𝐿2𝑑mol

= 1 − 2𝑞.

Only these remaining particles contribute to the non-zero
mean particle lifetime. In addition, particles that diffuse into
the grey area via 𝐷⟂-related motion will also be driven
out of the slab by conformation changes on a short/instant
timescale. This effectively reduces the slab width to the
𝐿 − 2𝑑mol thickness of the centre region (pink) of the slab.
The large value of 𝜈 also causes all statistics in 𝑠-direction
of the domain to be equilibrated, so we can predict the
mean lifetime for the particles in this region using the SPM
approach. The mean lifetime in this centre region is then

𝜏SPM(𝐿 − 2𝑑mol) =
1
12

(𝐿 − 2𝑑mol)2

𝐷⟂

compared to the translation-only lifetime of a bulk slab of
thickness 𝐿:

𝜏SPM(𝐿) =
1
12

𝐿2

𝐷⟂

The mean lifetime in the slab 𝜏EPM under these conditions
can then be calculated as:

𝜏EPM ≥ 2𝑞 ⋅ 0
⏟⏟⏟
grey area

+ (1 − 2𝑞) ⋅ 𝜏SPM(𝐿 − 2𝑑mol)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

pink area

therefore resulting in the following limit of 𝑅:

𝑅(𝜈 → ∞, 𝑞 ≤ 0.5) =
𝜏EPM
𝜏SPM

(10)

≥(1 − 2𝑞)
(𝐿 − 2𝑑mol)2

𝐿2
(11)

=(1 − 2𝑞)3 (12)

B.2. Approximations of 𝑅B at 𝜈 ≫ 1
The limit 𝜈 ≫ 1 describes systems with dominant

motion processes in terms of internal deformation on a
shorter time scale than translation alone. We can then split
the mean lifetime 𝜏EPM into two contributions:

𝜏EPM ≈𝜏lim(𝐿, 𝑑mol, 𝐷⟂) + 𝜏mol(𝐿, 𝑑mol, 𝐷mol) (13)

with

𝜏lim(𝐿, 𝑑mol, 𝐷⟂) =

{

1
12

(𝐿−2𝑑mol)3

𝐷⟂𝐿
𝑞 ≤ 0.5

0 else
(14)

being the translation based lifetime only in the centre region
where deformation cannot drive the particle out of the slice
(pink, if it exists) and 𝜏mol modelling the lifetime of a particle
being driven out of the slice by deformation in the edge
region (grey). Due to the processes in the grey region being
dominated by 𝐷mol, we can deduce that

𝜏mol = 
(

1
𝐷mol

)

(15)

and hence

𝑅𝐵 ≈
𝜏EPM
𝜏SPM

= 𝑅B,lim(𝑞) + (𝜈−1) (16)

where

𝑅B,lim =

{

(1 − 2𝑞)3 𝑞 ≤ 0.5
0 else

(17)

denotes the convergence limit for 𝜈 → ∞ for a fixed 𝑞.
Due to this convergence behaviour, we have opted to only

calculate 𝑅(𝜈, 𝑞) up to a maximum value of 𝜈max = 102 and
then extrapolate the values as follows:

𝑅𝐵(𝜈 > 𝜈max, 𝑞) = 𝑅lim + (𝑅𝐵(𝜈max, 𝑞) − 𝑅lim)
𝜈max
𝜈
(18)

C. Fitting procedure for the LWR/EPM
method
As the fit with three fit parameters 𝑑mol, 𝐷mol and 𝐷⟂

proved unreliable at approximating the observed data, we
opted for a different technique.

The principal idea is as follows:
1. Initially we make a guess for a reasonable value of

𝐷mol.
2. For a fixed choice of 𝐷mol we then perform a fit of

𝑅(𝜈, 𝑞) as a function of 𝑑mol and 𝐷⟂ to the values of

𝜏𝑖 =
𝜏EPM,i

𝐿2
𝑖

,

which provides us with two optimum fit parameters
𝑑mol and 𝐷⟂.

3. Then we change the value of 𝐷mol for the fixed values
of 𝑑mol and 𝐷⟂ until certain constraints are met and
go back to performing the fit for 𝑑mol and 𝐷⟂ until the
fit is good enough and the parameters do not change
too much.
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Figure A10: Single-parameter plots of the universal correction
function 𝑅(𝜈, 𝑞): Cross sections of the universal correction
function 𝑅(𝜈, 𝑞) in the directions of 𝑞 and 𝜈 in addition to
the full surface presented in fig. 3

A few more details on the algorithm outlined above:
In the case of the ILs presented in this paper, we picked
the result of applying the SPM to the where we implicitly
assumed a comparable scale of 𝐷mol and 𝐷⟂.

The switch from 𝜏EPM to 𝜏 (as visualised in fig. 4c)
removes the scaling with 𝐿 as predicted by the SPM (as seen
in fig. 4b) and allows us to focus on the relative deviation
of 𝜏EPM from the ideal point-like particle. It also simplifies
visual inspection of the fit results.

The resulting data of 𝜏𝑖 should – according to the na-
ture of 𝑅(𝜈, 𝑞) – exhibit a convergence to a 𝐷⟂-dependent
value for the limit 𝐿 → ∞ and a lower convergence limit
controlled by 𝐷mol for 𝐿 → 0. This imposes limits on the
choice of 𝐷⟂ during the fit, because the upper convergence
limit needs to be above our maximum measured value for 𝜏𝑖.
This reduces the options that the fit algorithm has in trying
to find the optimum parameters.

In the lower limit 𝐿𝑖 → 0, the values of 𝜏𝑖 should in
theory continuously decrease, but the issue of finite time
resolution of the simulation steps sets a lower limit for the
times 𝜏EPM,i that we can resolve. This makes the values
of 𝜏𝑖 increase for low values of 𝐿𝑖 again after reaching
a minimum. As this is an artefact of the simulation, we
truncate those values of 𝜏𝑖 for small 𝐿𝑖 after attaining their
global minimum.

The value of 𝐷mol for a choice of 𝑑mol and 𝐷⟂ obtained
from the fit needs to be chosen such that the lower conver-
gence limit of the fit function lies below the minimum ob-
served value of 𝜏𝑖. We enforce this by iteratively increasing
𝐷mol if we get a convergence limit that is above the minimum

and by decreasing it if the convergence limit is too far below
the observed minimum. After adapting 𝐷mol, we iterate on
the fit of 𝑑mol and 𝐷⟂ and the subsequent optimisation of
𝐷mol until values are converged and the limit constraints are
met.

In our experience, applying this fitting procedure to
point-like-particles like described by the SPM (e.g. water)
does not yield perfect results, because then there are two
excess parameters in the overall fitting process. This can
easily identified by observing the visual fit results in a
representation like fig. 4c, where the results for 𝜏𝑖 will lie on
a horizontal line when 𝑑mol is very small. If that is the case,
then the SPM should be applied and no attempt at fitting the
EPM to those 𝜏𝑖 results should be made.

D. Simulation Methods for IL systems
The analysis of complex IL systems is based on MD sim-

ulations of [C𝑛Mim][NTf2] (𝑛 = 2, 4, 6, 8, 10) which were
performed in GROMACS 5.1.2 [81] with a 2 fs time step.
For benchmarking we used simulations of bulk ILs (1000 ion
pairs, 100 ns production run), for the studies of supported IL
films, we use the same ILs (1800 ion pairs, 200 ns production
runs), deposited on a neutral hydroxylated alumina surface.
All simulations were performed as discussed in detail in our
previous work [12].

In short, the Van der Waals parameters for [C𝑛Mim]+
(𝑛 = 2, 4, 6, 8, 10) cations and [NTf2]− were adapted from
Maginn [82] and Canongia Lopez and Padua [54], respec-
tively. In all systems, the partial atomic charges were derived
from quantum mechanical calculations (HF/6–31G level of
theory) and were rescaled to 90% of their original values
[12, 83].

See fig. A11 for atom indices and table A5 for resulting
charges of the respective atoms.

Van-der-Waals and Coulomb interactions were cut-off at
1.2 nm. In all production IL simulations, the temperature is
controlled with the Nosé-Hoover thermostat [84, 85] with a
coupling time of 0.4 ps, while for the water system the BDP
velocity rescaling thermostat [86] is used with a coupling
time of 0.5 ps. The IL systems are created initially with
random configurations of the solvent placed either in a cubic
box (pure liquid system, fig. 1) or a triclinic box (system with
a solid fig. 2). In the system with a solid, this results in a slit
pore due to the periodic boundary conditions that are applied
in all three systems.

D.1. Pure IL system
After minimising the energy of the system to create a

numerically stable starting configuration, the system was
relaxed in an NVT ensemble for 5 ns. Afterwards a simulated
annealing step was conducted in the NPT ensemble for
12 ns (𝑃 = 1 atm, 𝛽 = 4.8 × 10−5MPa−1) employing
the Berendsen barostat [87]. The system was heated from
300K to 700K over 3 ns and kept there for another 3 ns. It
was then cooled down back from 700K to 300K over 4 ns,
where it was kept for another 2 ns with the Nosé-Hoover
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Figure A11: Structural information on ILs in MD simulations: Indices of atoms in the constituting cations [C𝑛Mim]+

(𝑛 = 2, 4, 6, 8, 10) and of the shared anion [NTf2]−. The index corresponds to the row with the associated charge in table A5.

thermostat to allow for final adjustments of the density to
atmospheric pressure. The box scaling was isotropic. The
obtained model system was simulated via the NVT ensemble
(cubic box) at 𝑇 = 300K for 100 ns as the production run,
with the temperature again being controlled via the Nosé-
Hoover thermostat.

D.2. S-L-V IL system
The simulated S-L-V system contained of a slab of

sapphire (7.57 nm×6.29 nm×2.12 nm) optimised in GULP
[88] with a fully hydroxylated (0001) 𝑥-𝑦 surface, defined
by the CLAYFF [89] force field. We positioned 1800 ion
pairs of IL above the surface of the sapphire (2.1 nm) in a
monoclinic simulation box. Coupling between the IL and
the solid surface was performed using the Lorentz-Berthelot
mixing rules [42]. The systems were first minimised and
then semi-isotropic NPT annealing simulations, using 𝑃 =
1 atm, 𝛽 = 4.8 × 10−5MPa−1, were performed for 12 ns, the
subsequent annealing procedure being the same as for the
pure IL system. The box scaling was only allowed to vary
in the 𝑧-direction orthogonal to the solid-liquid interface.
Afterwards an 80 nm large vacuum slab is placed on top
of the solid-liquid film with the purpose of decreasing the
contribution of the z-replicas to the electrostatic interactions
in the central simulation cell, thus creating a solid-liquid-
vacuum system (see fig. 5). The model system then spans
a height of about 100 nm in the 𝑧-direction. The obtained
model system was simulated via the NVT ensemble at 𝑇 =
300K for 200 ns as the production run, with the temperature
again being controlled via the Nosé-Hoover thermostat using
the Langevin algorithm [84, 85].

E. Error estimates
In our paper, we use several differently distributed ran-

dom variable statistics. Most notable among those are the
Mean Square Displacement (MSD) of the Einstein approach.
We generally assume the MSD to be the estimated variance
of a normal distributed random variable. Hence, the MSD is
a prime example of a 𝜒2-distributed variable for which we
can provide an error estimator via the usual estimator for the
variance.

Let

𝑆 = 1
𝑛 − 1

∑

𝑛
(𝑋𝑛 −𝑋)2 (19)

denote the standard unbiased estimator for the variance of a
sample set of size 𝑛. Then

𝑄 =
(𝑛 − 1)𝑆

𝜎2

is expected to be 𝜒2
𝑛−1-distributed (𝜒2 with 𝑛 − 1 degrees

of freedom) and we can use this to derive a (1 − 𝛼)100%-
confidence interval for 𝜎2:

𝑃
⎛

⎜

⎜

⎝

𝜎2 ∈
⎡

⎢

⎢

⎣

(𝑛 − 1)𝑆2

𝜒2
𝛼
2 ,𝑛−1

,
(𝑛 − 1)𝑆2

𝜒2
1− 𝛼

2 ,𝑛−1

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= 1 − 𝛼 (20)

where 𝜒2
𝑝,𝑘 is defined by:

𝑃 (𝑋 > 𝜒2
𝑝,𝑘) = 1 − 𝑝 (21)
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Table A5
MD simulation information for IL systems: Table of atomic charges for Imidazolium based cations [C𝑛Mim]+ (𝑛 = 2, 4, 6, 8, 10)
and the anion [NTf2]− obtained by using the Restrained Electrostatic Potential (RESP) method with HF/6–31G(d) level of theory.
All presented values are scaled with 0.9.

[C2Mim]+ [C4Mim]+ [C6Mim]+ [C8Mim]+ [C10Mim]+ [NTf2]−

1 -0.136622 -0.14958 -0.137267 -0.134654 -0.132264 0.174291
2 0.0652815 0.0900063 0.0836334 0.0797373 0.0780924 -0.095428
3 0.01755 -0.0004824 0.000747 0.0011457 -0.0014544 -0.095428
4 0.0226287 0.0170505 0.0097668 0.0160227 0.0236502 1.018366
5 -0.172285 -0.15333 -0.171917 -0.1769508 -0.1827252 -0.512421
6 -0.139399 -0.148145 -0.1359441 -0.1330929 -0.1333647 -0.095428
7 -0.0203112 -0.0862749 -0.0532314 -0.0486414 -0.048312 -0.512421
8 -0.0504603 -0.055845 -0.0338382 -0.0398997 -0.0366318 -0.66306
9 0.114269 0.115376 0.112046 0.1112931 0.1114506 1.018366
10 0.114269 0.115376 0.112046 0.1112931 0.1114506 -0.512421

11 0.114269 0.115376 0.112046 0.1112931 0.1114506 -0.512421
12 0.0929871 0.109707 0.0978534 0.0943713 0.0925002 0.174291
13 0.0929871 0.109707 0.0978534 0.0943713 0.0925002 -0.095428
14 0.215133 0.216416 0.2133639 0.2130768 0.212904 -0.095428
15 0.228733 0.220349 0.2316618 0.2330883 0.2352042 -0.095428
16 0.200999 0.198031 0.2031246 0.2040003 0.2051037
17 0.0466569 0.0566802 0.0457668 0.0456636 0.0437388
18 0.0466569 0.0566802 0.0457668 0.0456636 0.0437388
19 0.0466569 0.0165366 -0.0421785 -0.0497616 -0.0468216
20 0.0215739 0.0305424 0.0356244 0.0347736

21 0.0215739 0.0305424 0.0356244 0.0347736
22 -0.0600399 -0.0317277 -0.0220308 -0.0230748
23 0.0244188 0.022545 0.0209928 0.0204888
24 0.0244188 0.022545 0.0209928 0.0204888
25 0.0244188 0.0091584 -0.024444 -0.023118
26 0.0120222 0.0135372 0.0130152
27 0.0120222 0.0135372 0.0130152
28 -0.0623853 -0.0123216 -0.0090108
29 0.0211455 0.0061128 0.0067356
30 0.0211455 0.0061128 0.0067356

31 0.0211455 0.0376824 0.0020568
32 -0.0022692 0.0013164
33 -0.0022692 0.0013164
34 -0.048024 -0.0036876
35 0.0143748 0.0058968
36 0.0143748 0.0058968
37 0.0143748 0.0187032
38 0.0035028
39 0.0035028
40 -0.060936

41 0.0157992
42 0.0157992
43 0.0157992

with 𝑋 being a 𝜒2
𝑘 -distributed random variable.

Wherever an error or confidence interval for the MSD is
denoted in our graphs or calculations (e.g. in linear fits for
the derivation of 𝐷), we use this estimate of the confidence
interval with 𝛼 = 0.05.

For the lifetime distributions, our calculations show,
that the lifetimes are distributed like an overlay of multiple
exponential functions. To obtain a confidence interval for the

mean lifetime, we thus use the mid- to long-term approx-
imation of the lifetime being approximately exponentially
distributed to derive a confidence interval.

Let 𝑋 denote the mean lifetime of a sample set obtained
from 𝑛 data points, then the (1−𝛼)100%-confidence interval
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Figure A12: Deformation parameters extracted from IL SLV
systems: Total added up INND of ILs at the (a) solid and
(d) vacuum interfaces relative to INND in bulk. 𝐷mol profiles
relative to the bulk system value at the (b) SL and the (e) LV
interfaces. 𝑑mol profiles relative to the bulk system value at the
(c) SL and the (f) LV interfaces. In 𝐷mol at the LV (e), we
see profiles similar to 𝐷⟂ in fig. 6h, whereas the behaviour at
the SL interface (c) is much closer to that of 𝐷∥ in fig. 6d.
Overall, 𝐷mol drops to about a quarter of its bulk value at
the SL (b) and climbs to about 4 times its bulk value at the
LV interface (e). Also 𝑑mol is only affected at the very contact
layers close to the interfaces, where deformation in constrained
by the interface being present. More specifically, 𝑑mol exhibits
a trend of dropping to about half the bulk value at the SL
interface (c) as well as at the LV interface (f) with the variance
being higher at the SL.

for the mean lifetime 𝜏 is given by:

𝑃
⎛

⎜

⎜

⎝

𝜏 ∈
⎡

⎢
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2𝑛𝑋
𝜒2

𝛼
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⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= 1 − 𝛼 (22)

Hence, this sets a confidence interval to estimate the true
range of 𝜏 with 𝛼 = 0.05 as well as the estimate of the
resulting error of the mean diffusion coefficient 𝐷⟂.

F. Experimental reference values
We used experimental results from Tokuda et al. [59] to

provide an experimental reference value for our simulation-
based diffusion results for 𝑛 = 2, 4, 6, 8 (no experimental
results for 𝑛 = 10 were available to us). In the referenced
work, Tokuda et al. provide per-particle-family (i.e. cation

and anion) and temperature-dependent results for the self-
diffusion coefficient 𝐷 in the form

𝐷(𝑇 ) = 𝐷0 exp
(

− 𝐵
𝑇 − 𝑇0

)

, (23)

where they provide the values of 𝐷0, 𝐵 and 𝑇0 including
respective error estimates (Δ𝐷0, Δ𝐵 and Δ𝑇0) in a tabular
fashion. As our simulations are run at 𝑇 = 300K, we used
their values for the parameters and their error estimates to
calculate the values of 𝐷(𝑇 ) and a respective error estimate
Δ𝐷(𝑇 ) via the formula:

Δ𝐷(𝑇 ) =
(

Δ𝐷0 +𝐷0
Δ𝐵 × (𝑇 − 𝑇0) + 𝐵 × Δ𝑇0

(𝑇 − 𝑇0)2

)

× exp
(

− 𝐵
𝑇 − 𝑇0

)

. (24)

In table 1, we denote the obtained values and error estimates
as 𝐷(𝑇 ) ± Δ𝐷(𝑇 ).

G. Considerations for the choice of 𝐿
The results obtained from a trajectory analysis using

the SPM and EPM/LWR methods depend on the time-
resolution of the trajectory. Since the time difference be-
tween subsequent frames limits the statistical resolution of
short lifetimes as a consequence of discretisation, the choice
of simulation settings – most notably the total simulated
duration and the time difference between subsequent frames
– is essential for lower and upper bounds on viable slice
thicknesses 𝐿. Additionally, small-size effects in very small
bulk systems can cause anisotropy to arise, which may also
deviate from assumptions of our model, thus reducing its
accuracy [90]. At small values of 𝐿, the very short expected
and observed lifetimes can also be too short to actually
resolve the diffusive regime setting an absolute lower limit to
possible slice thicknesses that even shorter simulation time
steps cannot reduce further.

Overall, we wish to point out, that the choice of 𝐿
and accompanying simulation parameters must be picked
carefully or one may end up with parameters for the wrong
particle dynamics or simply discretisation artefacts.

H. Additional software resources
We supply further material on github and Zenodo.

Most notably, the accompanying github project page https:

//github.com/puls-group/diffusion_in_slit_pores contains
the pre-calculated tabular data of the universal correction
function for bulk-like slabs 𝑅𝐵(𝜈, 𝑞) as well as the script
to calculate 𝑅𝐵(𝜈, 𝑞) in general via a numerical solution
to the underlying two-dimensional Smoluchowski equation.
In addition to the github project, where active development
may be going on and where we also invite feedback and
bug reports, we also offer an archived version of the code
on Zenodo [67], where the latest version of the project has
been archived to ensure long-time availability and a clearly
documented state at time of publication.
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Figure A13: Visualisation of the frozen layer on top of the solid in IL SLV systems: Residence probability distribution of anions
(blue) and cations (red) in the frozen layer (first 1Å from the SL interface) and the adjacent layer (next 5Å) for 𝑛 = 2, 4, 8 in
addition to the systems presented in fig. 9. (Figure adapted from [47])
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