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Hypothesis: Diffusion in confinement is an important fundamental problem with significant implications for 
applications of supported liquid phases. However, resolving the spatially dependent diffusion coefficient, parallel 
and perpendicular to interfaces, has been a standing issue. In the vicinity of interfaces, density fluctuations as 
a consequence of layering locally impose statistical drift, which impedes the analysis of spatially dependent 
diffusion coefficients even further. We hypothesise, that we can derive a model to spatially resolve interface-
perpendicular diffusion coefficients based on local lifetime statistics with an extension to explicitly account for 
the effect of local drift using the Smoluchowski equation, that allows us to resolve anisotropic and spatially 
dependent diffusivity landscapes at interfaces.
Methods and simulations: An analytic relation between local crossing times in system slices and diffusivity as 
well as an explicit term for calculating drift-induced systematic errors is presented. The method is validated on 
Molecular Dynamics simulations of bulk water and applied to simulations of water in slit pores.
Findings: After validation on bulk liquids, we clearly demonstrate the anisotropic nature of diffusion coefficients 
at interfaces. Significant spatial variations in the diffusivities correlate with interface-induced structuring but 
cannot be solely attributed to the drift induced by local density fluctuations.
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1. Introduction

Transport in strongly confined geometries, such as in porous materi-
als or thin films, is a fundamental problem in physics with direct appli-
cations in chemical sciences, engineering, biophysics and geosciences 
[1–4]. Most generally, the presence of interfaces breaks the symmetry 
of the system, impeding orthogonal molecular motions [5]. Already on 
the hydrodynamic level, this poses challenges for theoretical modelling 
and experimental exploration, while resolving molecular details adds a 
strong multi-scale component into the problem [6,7]. Close to solid in-
terfaces, the interactions between the liquid and the solid phase cause 
layering effects [8–10]. This can both hinder or promote diffusive trans-
port depending on the specific properties of the materials involved, and 
the direction of movement [11,12]. The consequence is anisotropic mo-
bility parallel and perpendicular to the confining surface [13–15].

It is typically difficult to account for the molecular nature of trans-
port in confinement using analytic theory approaches [16]. Therefore 
the modelling method of choice are molecular dynamics simulations, 
where the molecular details can be fully sampled while the long scale 
dynamics can be assessed with sufficient computing power [17–27]. 
However, in this case, the transport coefficients need to be extracted 
from recorded trajectories.

Several techniques have been established for that purpose. The most 
broadly used method relies on the Green–Kubo formalism, which em-
ploys velocity auto-correlation functions (VACF) to derive diffusion 
coefficients [28,29]. While easy to apply, this approach is reliant on 
appropriate simulation procedures to produce the required correlation 
observations [14,30–32]. Equally common is the Einstein approach 
[31,33–35], which derives diffusion coefficients from (positional) mean 
square displacement (MSD)1 [36]. Both of these methods have been 
adapted to address specific confinements, represented by reflecting 
boundary conditions for point like objects diffusing with a spatially 
independent transport coefficient [37,38]. Using MSD and VACF is 
appropriate for the analysis of diffusive transport in the direction par-
allel to the interface, in layers that are sufficiently thin such that the 
necessary conditions concerning symmetry, isotropy, and homogeneity 
apply. They are, however, not well-suited for the analysis along coordi-
nates where the diffusivity is variable and affected by the confinement, 
i.e. the diffusion coefficient perpendicular to an interface. Still they 
have been applied to such scenarios with varying degrees of success 
[39,40].

Dividing systems into slabs or layers to resolve spatial variability, 
comes, however, at a cost for the methods based on the MSD and the 
VACF, and results in a clear resolution limit. This limit is established by 
the fact that purely diffusive motion only sets in on the middle- to long-
term timescale and that the sampling of sufficiently long trajectories 
is biased by the finite width of the layer in the orthogonal direction 
[41,42]. Furthermore, convergence issues may appear [43] which may 
even be severe [44].

In recent times, a third family of methods has been used more 
frequently [45–47]. This class of models involves Markov-State-Model 
[48] and Bayesian approaches built from the ground up. In these ap-
proaches the space is systematically split into subspaces (slabs/slices) 
for particle positions [45,46,49]. The typical observable are transition 
rates [50,51] or transition times [52] between these subspaces that 
are linked to the underlying model parameters, such as diffusivity, via 
likelihood estimators assumed to reasonably model the analysed config-
uration. In the Bayesian approach specifically, the likelihood estimators 
are employed to derive a probability distribution on the parameters 

1 Abbreviations: Mean Square Displacement (MSD), velocity auto-
correlation functions (VACF), Simple Particle Model (SPM), Simple Particle 
Model with drift (SPM+d), Solid-Liquid (SL), Liquid-Vacuum (LV), Solid-Liquid-
Solid (SLS), Interface Normal Number Density (INND), Partial Differential Equa-
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space to identify the most likely set of parameters underlying the ob-
served time evolution. Through this approach, Markov State Models 
have been shown to perform as good as MSD/Green–Kubo approaches 
in unconfined geometries and surpassing their accuracy in confinement 
[42,53].

The Markov State and Bayesian approaches, however, also suf-
fer from certain constraints. They require an appropriate likelihood-
estimator [53], which may only be derived as an approximation and is 
not universally available. These methods also rely on a “good enough” 
a priori estimate of reasonable parameters [42] to secure an accurate 
posteriori distribution. Furthermore, basing the analysis on transitions 
between the states yields relative behaviour, which may require cali-
bration to an established baseline for the investigated liquid, instead of 
an absolute, purely local result. This problem is particularly evident in 
the jump-diffusion model [44], which represents a subclass of Markov-
State-Models.

The jump-diffusion model attempts to provide a link between the 
time spent in certain compartments of the system, the size of these com-
partments and average local diffusion coefficients [54]. However, our 
own investigation of this relation showed vast discrepancies in absolute 
diffusivities close to a pore wall [55]. Even in the original derivation, 
the authors used it only to provide a qualitative and relative estimate of 
the evolution of the transport of a simple particle close to an interface. 
Furthermore, in its current formulation, the jump-diffusion approach 
does not account for statistical drifts resulting from the potential of 
mean force between the diffusing particle and the confining walls. The 
impact of such a drift is especially severe close to the interface, where 
the potential diverges, and where significant density variations of the 
solvent typically occur further impacting the effective potential of the 
diffusing particle. It is therefore not possible to evaluate the system-
atic error made by estimates close to interfaces, which is still a major 
challenge.

In this work, we resolve these problems by expanding on the exist-
ing jump-diffusion approach. We first provide a precise formula linking 
the local diffusion coefficient of simple small particles to the observed 
mean duration of particle stays in a particular subspace, as a function 
of the subspace size. This enables us to provide absolute diffusivities 
without the need for a reference calibration. We furthermore perform 
a detailed analysis of the role of statistical drift by calculating the first-
order correction to the basic drift-free model. Based on this description, 
we are able to analyse the anisotropic diffusion profile of water in a slit 
hydroxylated alumina pore and its coupling to the local density profile. 
As a result we clearly demonstrate the oscillatory behaviour of diffusive 
transport coefficients at relatively large distances from the pore wall. 
Interestingly, we find that the drift due to effective interactions of the 
water with the wall affects the results only at the contact with the wall 
and hence, the basic model is sufficient for quantitatively describing the 
behaviour throughout the centre region of the pore.

2. Simple particle model for the perpendicular diffusion 
coefficients

Our first goal is to determine the local diffusion coefficient 𝐷⟂(𝑧)
within a slice based on the life time of a simple, point-like particle 
within the slice. We first perform this calculation in the absence of any 
drift, or spatially dependent diffusivities within the subspace of interest. 
After the establishment of this basic link, we will discuss an extended 
model, accounting explicitly for the presence of non-zero drift. This al-
lows for an estimate of the systematic error of the diffusion analysis as 
a consequence of neglecting drift in this so-called Simple particle model 
(SPM).

We base our analysis on a reduction of the liquid dynamics to 
movement along only one major axis, which we will refer to as the 
𝑧-direction. The other dimensions are reduced under the assumptions 
of sufficient symmetry. In the presence of an interface, we assume 𝑧 to 

be interface-orthogonal (see e.g. Fig. 1). This effectively 1D-system can 
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Fig. 1. Scheme of a nanoconfined simulation box and the associated slic-

ing: The highlighted light red rectangle (left) represents a thin slab near a solid 
interface, light yellow (middle) corresponds to bulk-like slabs and light green 
(right) represents a thin slab near a vacuum interface. See text for details. (Fig-

ure adapted from [56]). (For interpretation of the colours in the figure(s), the 
reader is referred to the web version of this article.)

then be cut into smaller slices of thickness 𝐿 (Fig. 1). More complex 
extensions than a 1D-system are possible but beyond the scope of this 
work.

We calculate the probability distribution 𝑝(𝑧, 𝑡) that a particle which 
is within the slice at time 𝑡 = 0 continuously remains within the slice 
until time 𝑡 ≥ 0 when it is found at position 𝑧 within the interval 
𝑧 ∈ [𝑧𝑖, 𝑧𝑖 + 𝐿], where 𝑧𝑖 is the lowest 𝑧 coordinate of the interval. 
According to standing literature [57] 𝑝(𝑧, 𝑡) is best described by the fol-
lowing Smoluchowski equation:

𝜕𝑡𝑝(𝑧, 𝑡) = 𝜕𝑧(𝐷⟂(𝑧)𝜕𝑧𝑝(𝑧, 𝑡)), 𝑧 ∈ [𝑧𝑖, 𝑧𝑖 + 𝐿]. (1)

The solution for the average life time 𝜏 emerges from integrating the 
resulting probability distribution 𝑝(𝑡) that a random particle within the 
slice at time 𝑡 = 0 has not left the slice until time 𝑡 > 0 (see Appendix A). 
As the slice thickness 𝐿 is chosen by us and 𝜏 can be obtained from 
the analysis of MD trajectories, one can then use the established link to 
compute 𝐷⟂.

With the assumption of constant particle density within the slab we 
can set the initial condition as 𝑝(𝑧, 0) = 𝑐𝑜𝑛𝑠𝑡. Now, the Smoluchowski 
equation can be solved for each slice independently, and there is no cou-
pling over the boundary conditions between two neighbouring slabs. 
Integrating the distribution 𝑝(𝑧, 𝑡) then yields the prediction for the 
mean lifetime 𝜏 , which is generally of the form

⟨𝐷⟂(𝑧)⟩ = 𝑐𝑜𝑛𝑠𝑡 × 𝐿2

𝜏
. (2)

The constant prefactor is determined by the boundary conditions, which 
depend on the positioning of the slab relative to the interfaces or rather 
the type of slab we are investigating.

Partitions within the fluid: For bulk-like slabs, where the particles of 
the liquid can escape in both 𝑧 directions (index B, i.e. yellow in Fig. 1) 
we choose absorbing boundary conditions in both directions at 𝑧 = 𝑧𝑖

and 𝑧 = 𝑧𝑖 + 𝐿. For our Simple Particle Model, this yields the following 
relation for 𝐷⟂B (see appendix A for detailed solution):

𝐷⟂𝐵 = 1
12

𝐿2

𝜏𝐵
. (3)

Interfacial slabs: Equation (1) is also solved in a scenario applicable 
to a slab at an impenetrable but otherwise non-interactable interface 
like a liquid-vacuum (LV) interface (index LV, green in Fig. 1). The 
slice boundary towards the vacuum is modelled to be reflecting, while 
the boundary towards the bulk liquid is treated as being absorbing. 
Accordingly, the particle is allowed to escape from the interface slice 
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only to the next slice towards the bulk (see appendix A for detailed 
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solution methodology). Under these conditions the average diffusion 
coefficient 𝐷⟂LV becomes:

𝐷⟂LV = 1
3

𝐿2

𝜏LV
. (4)

One can apply the same approach to a slab at the interface between 
the solid and the liquid (index SL, i.e. red in Fig. 1). However, the as-
sumption of a vanishing external potential (and thus stochastic drift) 
may not be directly applicable in such a slice if there are strong molec-
ular interactions (Coulomb forces or hydrogen bonds) [58]. When the 
molecules of interest adsorb to the surface and are basically immo-
bilised, as it happens for water close to hydrophilic interfaces or ionic 
liquids [59,60], the effective interface surface can be shifted beyond 
the adsorbed layer, and the derived result for an LV slab can be applied 
with good accuracy.

For the solution of eq. (1), the spatial dependence of the diffusion co-
efficient 𝐷⟂(𝑧) within the slab has been suppressed, and is replaced by 
its average value within the slice ⟨𝐷⟂⟩ = ⟨𝐷⟂(𝑧)⟩ (i.e. 𝜕𝑧𝐷⟂(𝑧) ≈ 0). We 
additionally assumed a constant free energy background within each 
slab. These conditions are entirely fulfilled in bulk liquids. In confined 
liquids, a non-constant statistical density profile of a particle of inter-
est develops at the interfaces due to the effective interaction potential 
with the interface. At the extreme points of that potential, the condi-
tions of constant background potential and constant diffusion are in 
essence correct. The assumption of constant potential is, however, only 
an approximation in between extrema.

2.1. Accounting for the influence of particle drift

To address this aforementioned issue of the SPM, we now explicitly 
deal with the presence of a drift and analytically quantify the system-
atic error introduced by its omission. Technically, we follow a similar 
approach as employed for the solution to the drift-free Smoluchowski 
equation. We derive the relation between 𝐷, 𝐿 and 𝜏 accounting for a 
constant drift 𝜇 induced by a linear change in the effective background 
potential across a single slice (see Appendix B for detailed derivation). 
Here, we will limit our analysis to the bulk-like slab as the most com-
mon subspace geometry. As a result, we arrive at a relation

𝐷B(𝐿, 𝜏, 𝜇) = 1
12

𝐾B

(
𝜇𝐿

𝐷

)
𝐿2

𝜏
, (5)

which we term the Simple Particle Model with a drift (SPM+d), with a 
correction factor

𝐾B (𝛾) =
24
𝜋4

𝛾2

cosh (𝛾) − 1

∞∑
𝑛=1

(
1 − (−1)𝑛 cosh

(
𝛾

2

))
(

𝑛2 + 𝛾2

4𝜋2

)2 . (6)

The evolution of 𝐾B is visualised in Fig. 2. The interesting observation 
here is the square dependence of the correction on the relative drift 
amplitude 𝛾 = 𝜇𝐿∕𝐷. This allows for the control of the systematic er-
ror via a reduction of 𝐿. Consequently, the SPM can then still be used 
in the presence of a gradient of the effective potential, when the slabs 
are sufficiently thin such that the change in density between the two 
boundaries is small compared to the average background, the latter be-
ing explicitly accounted for. The systematic error introduced through 
the omission of the drift can then be expected to be reasonably small 
except for a very drastic potential changes e.g. immediately adjacent to 
an interface, where the SPM+d allows for a first-order correction.

3. Validating the SPM model using bulk water

To validate the SPM, we start extracting diffusion constants from tra-
jectories sampled in molecular dynamics simulations of a homogeneous 
and isotropic liquid such as water. In such a system, standard techniques 
based for example on the MSD can provide a reference value 𝐷MSD with 

excellent accuracy. Furthermore, an H2O molecule is sufficiently small 
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Fig. 2. Visualisation of the drift correction coefficient 𝐾B(𝛾). The plot shows 
the evolution of 𝐾B(𝛾) (eq. (6)) with increasing drift magnitude from no correc-
tion (i.e. 1) to the drift being the main contribution to lifetime (i.e. value 0). 
The inset shows the relative overestimation of the resulting diffusion coefficient 
𝐷 as a function of 𝛾 when applying the pure SPM with 1 representing the actual 
value.

for the basic premises of the SPM to be satisfied. Hence, these simula-
tions are the ideal system for evaluating the SPM’s performance.

All our simulations are performed in GROMACS, by building a cubic 
box of a side length of 8.9 nm with a total of 23419 SPC/E molecules (see 
Appendix C for full simulation details). After performing an equilibra-
tion protocol, a production run is performed in the NVT ensemble with 
periodic boundary conditions for a total of 10 ns. The diffusion constant 
𝐷

H2O
MSD is obtained from the mean square displacement averaged over all 

spatial directions and all molecules in the system throughout the entire 
production run using a standard GROMACS tool. This analysis yields a 
reference value of

𝐷
H2O
MSD = 2.42(1) × 10−5 cm2 s−1.

To calculate the predictions of the SPM, non-overlapping and ad-
jacent slices are chosen with a fixed slice thickness 𝐿, covering the 
entire simulation box. We then measure the lifetime distribution of wa-
ter molecules in each slab, and calculate the average 𝜏(𝐿) for that slab 
(Fig. 3). The diffusion constant 𝐷SPM is calculated using eq. (3) in each 
slice independently. All obtained values are averaged to yield 𝐷H2O

SPM(𝐿)
and its standard deviation for comparison with 𝐷MSD. This procedure is 
repeated for a range of 𝐿 to test the sensitivity of the SPM to the slab 
thickness (inset of Fig. 3).

At high resolutions, i.e. slab thicknesses smaller than the water 
molecule itself (𝐿 < 0.3 nm), the accuracy of 𝐷H2O

SPM is gradually dimin-
ished. We attribute this to 𝜏 being comparable to the output frequency 
of the simulation, which statistically overestimates relatively short es-
cape times due to discretisation errors. Also, on these time scales a bal-
listic regime appears before frequent particle-particle interactions and 
diffusion kicks in [32]. Both of these effects make the deviation from the 
model assumptions of purely diffusive displacement larger. The overall 
result here is an overestimation of 𝜏 and an under-estimation of 𝐷⟂. 
At very low resolutions and thick slabs (𝐿 > 1.5 nm), sampling the full 
distribution of escape times again becomes a challenge. The reason is 
that it may take a very long time for a molecule to leave the slab, the 
observation of which may be limited by the finite simulation time.

At optimum resolutions, in the intermediate range 𝐿 ≈ 0.3 nm to 1.5
nm 𝐷

H2O
SPM is basically independent of the slab thickness, as expected. 

The obtained
1933

𝐷SPM ≈ 2.5 × 10−5 cm2 s−1
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Fig. 3. Benchmark of the Simple Particle Model (SPM) on a bulk water 
system for various choices of slab thickness 𝐿: Great agreement of average 
observed lifetimes 𝜏 (blue, solid) with the prediction made by the SPM (orange, 
dashed) based on bulk MSD values for 𝐷. An exception is noticeable where the 
mean lifetime approaches the frame time difference of the simulation and the 
statistics thus overestimate the crossing time at small 𝐿. (Inset) Comparison of 
the value of 𝐷 obtained from the SPM (eq. (3)) with the reference MSD value 
𝐷

H2O
MSD obtained using the GROMACS tool. The estimate converges with only 

an error of 5% for large 𝐿 but drifts off to underestimate 𝐷 for small 𝐿. (see 
appendix D for notes on error estimates).

is only off by about 6% relative to the reference value 𝐷H2O
MSD (see Fig. 3). 

One may initially consider these systematic deviations to be a con-
sequence of finite size effects, which have been proven to influence 
MSD-based diffusion results in small scale systems [61], but existing lit-
erature has actually shown that the value of the diffusion coefficient 
𝐷 itself is affected by system size and not only one singular method 
of derivation [62]. Finite-size correction thus has to be applied equally 
to the SPM and the MSD results, not explaining the observed differ-
ence. Instead, we suspect the origin of the deviation to lie in anisotropic 
small scale structuring effects of the pure bulk liquid. Hence, the full-
system MSD, which takes into account all directions as well as more 
data points, is less susceptible to this effect whereas we observe the 
SPM to be slightly more affected.

We conclude that for water, the SPM has generally proven accurate 
at quantitatively recovering the expected diffusion coefficient values 
since the water molecules are well represented by rigid, point-like parti-
cles, satisfying the underlying assumptions of the SPM method. Despite 
a small systematic over-estimation of the diffusion constant at optimal 
resolutions, the SPM provides absolute estimates, significantly improv-
ing on the technique employed by Bourg et al. [44]. The presented 
analysis, however shows that it is important to make an adequate choice 
of 𝐿. The resolution with which the diffusion constant can be properly 
determined depends on the time-step with which the trajectories are 
recorded (i.e. the time scale at which diffusive regime can be sampled), 
the order of magnitude of 𝐷⟂, the internal particle dynamics, and the 
total simulation time.

4. Anisotropic diffusion of liquids in confined geometries - water 
in a slit alumina pore

Building on its validation on bulk liquids with a constant density 
background, we now employ the SPM to study systems where the dif-
fusivity is much harder to determine. One such example are strongly 
confined liquids in nanopores. Here, interface-adjacent dynamics as 
well as bulk-behaviour in direct confinement are properties that lend 
themselves to experimental analysis whereas simulations, in theory, 
allow for a more thorough investigation of the transitional region in be-
tween. The difficulties arise from the lack of a clear separation of length 
scales between the molecular size of diffusing particles, the thickness of 

the pore/film, and the effective interaction potentials between diffusing 
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particles and the solid phase [2]. These potential interactions close to 
interfaces may require a large number of slabs to be simulated before 
properties of a bulk liquid are restored [63,64].

An additional issue is the geometry of the systems which induces 
anisotropy of the diffusion constants parallel and perpendicular to the 
interfaces. This, so far, has been very challenging to characterise both 
experimentally and in simulations. Most attempts at this have employed 
Einstein/MSD based techniques and applied them to e.g. obtain an 
average second-order diffusion tensor across the entire system [63]. Al-
ternatively, they needed to significantly restrict the spatial resolution 
of their analysis to obtain reasonable locally-confined trajectories [65]. 
This can now be circumvented with the SPM approach which permits 
resolving anisotropic diffusivities close to interfaces but also in the tran-
sitional region between the pore wall and the central part of the pore. 
We will additionally employ the SPM+d approach to quantify the reli-
ability and significance of the SPM analysis close to interfaces, where 
interface-particle interactions may have a major impact on the resulting 
diffusivity profile perpendicular to the pore wall.

4.1. MD simulations and the SPM

We base our investigation on MD simulations of water in a slit hy-
droxylated alumina pore (Fig. 4a). For this purpose, a 6 nm symmetric 
pore is filled with about 10000 SPC/E water molecules and equilibrated 
following an established protocol [64]. The diffusion data are sampled 
over a 10 ns production run (see appendix C for methodological details). 
For the purpose of analysing diffusivity, the pore is sliced in parallel to 
the pore walls (see Fig. 1). The diffusivity parallel to the pore walls 
(𝐷∥(z)) is calculated from the MSD, the latter constructed from single 
component trajectories over the two coordinates parallel to the wall of 
each molecule, sampled as long as it remains in the slab. The perpen-
dicular diffusion coefficients 𝐷⟂(𝑧) are extracted using the SPM.

The 𝑧-position of diffusion coefficients is chosen to be the centre 
𝑧-coordinate of the slice interval [𝑧𝑖, 𝑧𝑖 + 𝐿] with the error bar in 𝑥 di-
rection being half the slice thickness 𝐿, which is variable. Namely, the 
perpendicular particle mobility is expected to be lower and lifetime con-
sequently higher at the liquid-solid-interfaces [66]. We are, therefore, 
able to reduce the slice thickness and increase the resolution of the SPM 
up to 𝐿 = 0.1 nm, without loss of accuracy at the solid-liquid interface. 
For the MSD, the maximal resolution is 𝐿 = 0.2 nm since at smaller 
𝐿 a linear regime is no longer observed. Towards the bulk, the slice 
thickness is increased to 𝐿 = 0.5 nm due to the expected higher parti-
cle mobility comparable to the bulk system, where the larger 𝐿 proved 
necessary and reasonable. Also no significant variation in 𝐷 is expected 
in the centre of the pore.

The obtained 𝐷∥ and 𝐷⟂ (Fig. 4 c and d) are compared with the in-
terface normal number density (INND) of atoms in the water molecules 
(Fig. 4 b). The diffusivity profiles in Fig. 4 are normalised by the refer-
ence bulk diffusivity 𝐷

H2O
MSD. To account for finite size effects, 𝐷

H2O
MSD is 

evaluated in a bulk water system that has a similar size as the extent of 
SPC/E water in the pore in 𝑥 and 𝑦 direction (i.e. (3 nm)3, simulated 
with periodic boundary conditions).

Focusing on the central region of the pore (0.2 < 𝑧∕𝑧𝑠𝑦𝑠 < 0.8), we 
observe a structurally bulk-like region as confirmed by comparing den-
sity correlation functions of bulk and confined water in these slabs. 
This agrees with similar findings from related studies on water in nano-
channels of a similar size [67]. Here, the MSD method provides values 
of 𝐷∥ in good agreement with the reference bulk diffusion, mobility 
being only slightly lowered. Contrary to that, the SPM now predicts a 
𝐷⟂ below the bulk reference value. This indicates a stronger influence 
of the solid interfaces on perpendicular particle motion with the effect 
actually spanning the entirety of the pore. Given the structural simi-
larity of the centre region to the bulk system, we hypothesise that this 
decrease originates from long-range hydrodynamic effects.

Close to the interfaces (0.025 < 𝑧∕𝑧𝑠𝑦𝑠 < 0.2 with the lower bound 
1934

signifying the position of the maximum in the INND; also the symmet-
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Fig. 4. Particle transport in a water slit pore: (a) Pore geometry employed 
for the water SLS simulation. The solid support (grey) with its hydroxilation 
(yellow) is mirrored to both sides of the liquid phase (white/red), so that con-
finement is created between two parallel solid layers. In all other directions, 
periodic boundary conditions are applied. Within this slit pore, we obtain plots 
of (b) interface normal density profile, (c) MSD-based interface-parallel diffu-
sion coefficient profile and (d) perpendicular lifetime based diffusion obtained 
via the SPM in a solid-liquid-solid pore system filled with water. The pore has 
an inner diameter 𝑧sys ≈ 6 nm and the slice thicknesses are chosen in the range 
0.2 nm to 0.5 nm for the MSD, and 0.1 nm to 0.5 nm for the SPM.

rically positioned region), the difference between parallel and perpen-
dicular diffusion is vast (Fig. 4 c and d). Along the parallel direction, 
𝐷∥ drops at most by a factor of three compared to the centre region, 
while 𝐷⟂ is up to 16 times smaller. The drop being more severe in 𝐷⟂
due to the existence of a boundary has previously been predicted the-
oretically using hydrodynamic modelling approaches [66,68–70] but 
also measured experimentally [65]. Where the parallel profile is gradual 
and smooth, in perpendicular direction, 𝐷⟂ develops a very structured 
profile decaying over a region twice as thick as for 𝐷∥. These fluctu-
ations anti-correlate with the density fluctuations which can be seen 
by comparing INND and 𝐷⟂(𝑧) in Fig. 5. This result suggests that in 
this region, molecular crowding, which has been shown to suppress the 
in-plane (parallel) diffusivity [71], affects the perpendicular diffusion 
more than the parallel component. This difference in the level of struc-
turing between 𝐷⟂ and 𝐷∥ cannot be attributed solely to the difference 

in resolution.
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Fig. 5. Correcting for statistical drift in a water slit pore: (a) Interface 
normal density profile normalized by bulk density close to one of the SL inter-
faces, (b) perpendicular lifetime based diffusion obtained via the SPM (dashed-
dotted/black) and the first-order correction of the SPM+d (dashed/blue) in a 
solid-liquid-solid pore system filled with water as in Fig. 4. Vertical lines are 
drawn to guide the eye at maxima and minmia of the INND. The impact of the 
drift-correction is only significant in the 5% of the film closest to the pore wall.

The most intriguing result, however, is the nontrivial interplay be-
tween the water density (i.e. the effective potential) and the diffusiv-
ity perpendicular to the pore wall in the slabs close to the interfaces 
(0 < 𝑧∕𝑧𝑠𝑦𝑠 < 0.025 as well as on the other interface). In this region (see 
Fig. 5), water can form hydrogen bonds with the hydroxyl groups on the 
surface of the alumina pore. This similarly affects both components of 
diffusivity. Importantly, however, in this region, the interaction poten-
tial with the surface is also oscillating, with steep gradients. Therefore, 
it must be confirmed that these observations are not a consequence of 
the assumption of a constant potential within each slice (albeit of dif-
ferent amplitude), as imposed by the SPM.

4.2. Estimate of the systematic error by explicitly accounting for drift

Equipped with the previously presented SPM+d approach, which ac-
counts for the impact of a non-constant drift term on the results of the 
diffusivity analysis, we are able to validate the significance of these ob-
served oscillations in 𝐷⟂. To extract the necessary ratio 𝜇∕𝐷 for the 
calculation of the correction coefficient 𝐾(𝛾) in the SPM+d approach, 
we fit the logarithmic density profile within a slice with a linear func-
tion and use the resulting slope as the 𝜇∕𝐷 value for 𝛾 (see appendix B). 
We then use the known slice thickness 𝐿 to calculate 𝛾 = 𝜇𝐿∕𝐷 and the 
resulting correction 𝐾(𝛾) to arrive at the diffusion coefficient 𝐷⟂,+𝑑 .

Plotting this new (SPM+d) profile in tandem with the profile ac-
cording to the SPM (see Fig. 5b), we actually observe virtually no 
change of the diffusion profile except for the 5% of the film immedi-
ately on top of the solids. There, the correction as a consequence of the 
first-order perturbation theory presented in the SPM+d actually leads 
to a further reduction of the diffusivity values in the dips and thus a 
more pronounced oscillation profile than through the SPM alone. Con-
sequently, we arrive at the conclusion that the characteristic profile of 
interface-perpendicular mobility changes in the water filled pore are 
actual changes in particle mobility as a consequence of the density os-
cillations associated with the formation of solvation layers. While these 
results provide fundamentally new insights into the anisotropic mobil-
ity of water in narrow pores, they also demonstrate the power of the 
SPM and SPM+d approaches when applied carefully in an appropriate 
system.

5. Discussion and conclusions

In this work, we have introduced a novel, so-called SPM technique 
1935

for quantitatively analysing anisotropic diffusion of small diffusing ob-
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jects with an extension to explicitly account for the effect of local drift 
in confined geometries. Our SPM results are obtained without the need 
for prior calibration as required for alternative, so-far available ap-
proaches [44]. The prowess of this approach has been demonstrated on 
the paradigmatic select case of bulk water as well as a water phase in 
a slit pore. We demonstrate that the SPM can quantitatively reproduce 
key aspects of diffusion by finding agreement with theoretical predic-
tions [69,70], simulations [63] and experimental measurements [65].

The SPM has — by design — opened up new opportunities to re-
solve a standing problem [67] of characterising the anisotropic diffusion 
tensor of liquids in confinement, where the conditions for the applica-
tion of methods, such as the Einstein/MSD [36] and the Green–Kubo 
[28,29] approaches, are not met. However, due to the dependence of 
the SPM approach on accurate lifetime statistics, significant care needs 
to be put towards influences that could alter these results. Besides tak-
ing care of performing the calculations at a reasonable resolution, the 
most obvious influence on SPM results could emerge from an effec-
tive interface-normal background potential. The latter is expected to 
introduce drift within the subspace of interest, causing lifetime statis-
tics to be under- and diffusivity to be overestimated by the SPM. We 
explicitly capture this effect in the SPM+d approach that delivers an an-
alytic solution to the simplified Smoluchowski equation with constant 
non-vanishing drift. Notably, the error introduced by the drift can be 
controlled by the choice of resolution in the SPM approach, rendering 
it useful even close to interfaces, where the gradients of the underly-
ing potential may be large. This allows for a more thorough analysis of 
interface-adjacent diffusion profiles that has so far not been possible.

Further improvement of the SPM+d approach could be achieved 
through the calculation of the correction factor of the diffusivity from 
to the skewness of escape probabilities to either boundary of the sub-
space, as discussed recently in related literature [57]. In doing so, the 
extended approach would at the same time allow for the analysis of 
the local free energy surface experienced by a diffusing object [47,50]. 
As such, information on the diffusivity becomes accessible even if the 
potentials cannot be fully resolved. For example, in experiments, the ef-
fective potential between the particle and the wall may not be readily 
available, unlike in MD simulations.

The potential of the SPM and SPM+d approaches is best demon-
strated by our test case of water confined to a slit pore. Based on the 
presented first-order correction theory, we show the strong anisotropy 
of water diffusion parallel and perpendicular to the pore wall in the 
interfacial layers. Furthermore, we are able to demonstrate the sig-
nificance of observed oscillations in perpendicular diffusivity which is 
related to the interface normal density profile in a more complex man-
ner than expected.

The main issue with the SPM and SPM+d approaches is the re-
quirement that the diffusive particle is small and possesses no relevant 
internal dynamics. This, of course, limits their application to only sim-
ple particles and liquids. More complex molecular liquids and larger 
flexible particles do not satisfy these conditions. Nevertheless, the SPM 
approach can be enriched to account for the internal degrees of free-
dom of diffusing species coupling to translations, as presented in the 
follow-up work [72].
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Appendix A. Simple particle model

Assuming a point-like particle diffusing purely with no external 
force field, we can model the diffusive process using the Smoluchowski 
equation:

𝜕𝑡𝜌(�⃗�, 𝑡) = 𝜕𝑥

(
𝐷(�⃗�)𝜕𝑥𝜌(�⃗�, 𝑡)

)
(7)

where 𝐷 denotes the local diffusion coefficient and 𝜌 the local parti-
cle density. As we want to derive a link between the mean time of a 
particle’s stay in a confined subspace, we will think of 𝜌 in terms of a 
probability density representing the probability that the particle is at 
time 𝑡 at position �⃗� without having left the subspace in between time 
0 and time 𝑡. Integrating over the entire subspace at time 𝑡 will give 
us the overall probability 𝑝(𝑡) of a particle remaining within the con-
fines of the subspace, which will go down from 𝑝(0) = 1 to 𝑝(𝑡 →∞) → 0
due to the particles diffusing out of the subspace. To model an overall 
mean evolution, we will assume an initial uniform distribution of the 
probability density over the subspace at 𝑡 = 0. Additionally, we assume 
isotropy and translational symmetry of the subspace along all but one 
axis, so we can integrate over those and only consider the density dis-
tribution along one axis. This also enables us to represent the slice of 
space considered as our confined subspace as an interval [0, 𝐿] of thick-
ness 𝐿 along the last remaining axis, which we denote as the 𝑧-axis, 
with absorbing boundary conditions, modelling the particle leaving the 
subspace.

Hence, we simplify above equation to the following system of PDE 
and initial/boundary conditions:

𝜕𝑡𝜌(𝑧, 𝑡) = 𝜕𝑧

(
𝐷(𝑧)𝜕𝑥𝜌(𝑧, 𝑡)

)
, 𝑡 ∈ [0,∞), 𝑧 ∈ [0, 𝐿] (8)

𝜌(𝑧,0) = 𝑝0, 𝑧 ∈ (0, 𝐿) (9)

𝜌(0, 𝑡) = 𝜌(𝐿, 𝑡) = 0, 𝑡 ∈ [0,∞). (10)

To solve this PDE, we will further assume that 𝐷(𝑧) be sufficiently con-
stant across the extent of the interval 𝐼𝐿 = [0, 𝐿] due to the background 
density of all particles (not just those not having left the slab between 
0 and 𝑡) remaining statistically constant, thus enabling us to solve the 
equation by finding the eigenfunctions of the equation:

−𝜆𝜌 = 𝐷𝜕2𝑧 𝜌 (11)

which in general amount to linear combinations of sine and cosine 
curves, but due to the absorbing boundary conditions are limited to 
sine-curves of the shape:

𝑓 (𝑧) = 𝑐 sin
(

𝑛𝜋
𝑧
)

(12)
1936

𝑛 𝑛 𝐿
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where

𝑐𝑛 =
⎛⎜⎜⎝

𝐿

∫
0

sin2
(

𝑛𝜋

𝐿
𝑧
)

𝑑𝑧
⎞⎟⎟⎠
− 1

2

(13)

is a normalisation coefficient and 𝜆𝑛 = 𝐷
(

𝑛𝜋

𝐿

)2
is the eigenvalue. We 

then need to decompose the initial condition in terms of a scalar prod-
uct for which we will choose the default scalar product for real-valued 
functions on the interval 𝐼𝐿:

⟨𝑓 , 𝑔⟩ =
𝐿

∫
0

𝑓 (𝑧)𝑔(𝑧)𝑑𝑧 (14)

This provides us with decomposition coefficients:

𝑎𝑛 = ⟨𝑓𝑛, 𝑝0⟩ (15)

and fixes 𝑐𝑛 such that:

⟨𝑓𝑛, 𝑓𝑛⟩ = 1⇔ 𝑐2𝑛 = 1

∫ 𝐿
0 sin2

(
𝑛𝜋

𝐿
𝑧
)

𝑑𝑧
(16)

so that overall:

𝜌(𝑧, 𝑡) =
∞∑

𝑛=1
𝑎𝑛𝑓𝑛(𝑧) exp

(
−𝜆𝑛𝑡

)
(17)

Integrating over 𝐼𝐿 (or the scalar product with the constant function 
𝐼(𝑧) = 1) then yields the survival probability 𝑝(𝑡):

𝑝(𝑡) = ⟨𝜌(⋅, 𝑡), 𝐼⟩ = ∞∑
𝑛=1

𝑎𝑛⟨𝑓𝑛(𝑧), 𝐼⟩ exp (−𝜆𝑛𝑡
)

(18)

From probability theory for purely non-negative random variables, we 
know that integrating 𝑝(𝑡) from 𝑡 = 0 to 𝑡 = ∞ will yield the average 
survival/crossing lifetime 𝜏 of the particle:

𝜏 =

∞

∫
0

𝑝(𝑡)𝑑𝑡 (19)

=
∞∑

𝑛=1
𝑎𝑛⟨𝑓𝑛(𝑧), 𝐼⟩

∞

∫
0

exp
(
−𝜆𝑛𝑡

)
𝑑𝑡 (20)

=
∞∑

𝑛=1
𝑎𝑛⟨𝑓𝑛(𝑧), 𝐼⟩ 1

𝜆𝑛
(21)

=
∞∑

𝑛=1
⟨𝑓𝑛(𝑧), 𝑝0𝐼⟩⟨𝑓𝑛(𝑧), 𝐼⟩ 1

𝜆𝑛
(22)

=
∞∑

𝑛=1
𝑝0⟨𝑓𝑛(𝑧), 𝐼⟩⟨𝑓𝑛(𝑧), 𝐼⟩ 1

𝜆𝑛
(23)

=
∞∑

𝑛=1
𝑝0

(⟨𝑓𝑛(𝑧), 𝐼⟩)2 1
𝜆𝑛

(24)

=
∞∑

𝑛=1
𝑝0

⏟⏟⏟

= 1
𝐿

1
𝜆𝑛

𝑐2𝑛

⎛⎜⎜⎝
𝐿

∫
0

sin
(

𝑛𝜋

𝐿
𝑧
)

𝑑𝑧
⎞⎟⎟⎠
2

(25)

= 1
𝐿

∞∑
𝑛=1

1
𝜆𝑛

(∫ 𝐿
0 sin

(
𝑛𝜋

𝐿
𝑧
)

𝑑𝑧
)2

∫ 𝐿
0 sin2

(
𝑛𝜋

𝐿
𝑧
)

𝑑𝑧
(26)

= 1
𝐿

∞∑
𝑛=1

1
𝜆𝑛

(
𝐿

𝜋𝑛
(1 − cos(𝜋𝑛))

)2

𝐿

2

(27)

= 1
∞∑ 1 (

𝐿
)2

(
𝐿

𝜋𝑛
(1 − (−1)𝑛)

)2

(28)

𝐿

𝑛=1 𝐷 𝑛𝜋 𝐿

2
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= 2𝐿2

𝐷𝜋4

∞∑
𝑛=1

1
𝑛4

(1 − (−1)𝑛)2 (29)

= 8𝐿2

𝐷𝜋4

∞∑
𝑛=0

1
(2𝑛 + 1)4

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Can be calculated from 𝜁(4)

(30)

= 8𝐿2

𝐷𝜋4 × 𝜋4

96
(31)

= 1
12

𝐿2

𝐷
(32)

Or, rearranging above equation:

𝐷B = 1
12

𝐿2

𝜏
(33)

which leaves us with the result presented in the main manuscript (eq.
(3)).

Before, in eq. (30), we used the fact, that:

∞∑
𝑛=0

1
(2𝑛 + 1)4

=
∞∑

𝑛=1

1
𝑛4

−
∞∑

𝑛=1

1
(2𝑛)4

(34)

=
∞∑

𝑛=1

1
𝑛4

− 2−4
∞∑

𝑛=1

1
𝑛4

(35)

= 15
16

∞∑
𝑛=1

1
𝑛4

= 15
16

𝜁 (4) = 15
16

× 𝜋4

90
= 𝜋4

96
(36)

One can easily see, that the assumptions of the above model do not 
hold for the scenario of an interface slab, where at least one of the 
interval boundaries is not absorbing but instead a reflective boundary 
through which the particle cannot leave the subspace. Let this without 
loss of generality be at 𝑧 = 0. In terms of the model, this replaces the 
condition

𝜌(0, 𝑡) = 0, 𝑡 ∈ [0,∞) (37)

with

𝜕𝑧𝜌(0, 𝑡) = 0, 𝑡 ∈ [0,∞) (38)

leaving us with eigenfunctions

𝑓𝑛(𝑧) = 𝑐𝑛 cos
(
(2𝑛 + 1)𝜋

2𝐿
𝑧

)
(39)

where

𝑐𝑛 =
⎛⎜⎜⎝

𝐿

∫
0

cos2
(
(2𝑛 + 1)𝜋

2𝐿
𝑧

)
𝑑𝑧

⎞⎟⎟⎠
− 1

2

(40)

is again a normalisation coefficient and their eigenvalues become 𝜆𝑛 =

𝐷
(
(2𝑛+1)𝜋

2𝐿

)2
. Performing the same procedure as above, we again arrive 

at

𝑝(𝑡) = ⟨𝜌(⋅, 𝑡), 𝐼⟩ = ∞∑
𝑛=1

𝑎𝑛⟨𝑓𝑛(𝑧), 𝐼⟩ exp (−𝜆𝑛𝑡
)

(41)

thus resulting in the new estimate for the mean lifetime:

𝜏 =

∞

∫
0

𝑝(𝑡)𝑑𝑡 (42)

=
∞∑

𝑛=1
𝑎𝑛⟨𝑓𝑛(𝑧), 𝐼⟩

∞

∫
0

exp
(
−𝜆𝑛𝑡

)
𝑑𝑡 (43)

=
∞∑

𝑛=1
𝑎𝑛⟨𝑓𝑛(𝑧), 𝐼⟩ 1

𝜆𝑛
(44)

∞∑ 1
1937

=
𝑛=1

⟨𝑓𝑛(𝑧), 𝑝0𝐼⟩⟨𝑓𝑛(𝑧), 𝐼⟩
𝜆𝑛

(45)
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=
∞∑

𝑛=1
𝑝0⟨𝑓𝑛(𝑧), 𝐼⟩⟨𝑓𝑛(𝑧), 𝐼⟩ 1

𝜆𝑛
(46)

=
∞∑

𝑛=1
𝑝0

(⟨𝑓𝑛(𝑧), 𝐼⟩)2 1
𝜆𝑛

(47)

=
∞∑

𝑛=1
𝑝0

⏟⏟⏟

= 1
𝐿

1
𝜆𝑛

𝑐2𝑛

⎛⎜⎜⎝
𝐿

∫
0

cos
(
(2𝑛 + 1)𝜋

2𝐿
𝑧

)
𝑑𝑧

⎞⎟⎟⎠
2

(48)

= 1
𝐿

∞∑
𝑛=1

1
𝜆𝑛

(∫ 𝐿
0 cos

(
(2𝑛+1)𝜋

2𝐿
𝑧
)

𝑑𝑧
)2

∫ 𝐿
0 cos2

(
(2𝑛+1)𝜋

2𝐿
𝑧
)

𝑑𝑧
(49)

= 1
𝐿

∞∑
𝑛=1

1
𝜆𝑛

(
2𝐿

𝜋(2𝑛+1) cos(𝜋𝑛)
)2

𝐿

2

(50)

= 1
𝐿

∞∑
𝑛=1

1
𝐷

(
2𝐿

(2𝑛 + 1)𝜋

)2
(
2𝐿(−1)𝑛
𝜋(2𝑛+1)

)2

𝐿

2

(51)

= 32𝐿2

𝐷𝜋4

∞∑
𝑛=0

1
(2𝑛 + 1)4

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
again using eq. (36)

(52)

= 32𝐿2

𝐷𝜋4 ⋅
𝜋4

96
= 1

3
𝐿2

𝐷
(53)

This leaves us with four times the expected mean lifetime of a bulk-like 
slab with the same diffusion constant and same thickness 𝐿 for interface 
slabs or – rearranging:

𝐷LV = 1
3

𝐿2

𝜏
(54)

as an estimator for the mean diffusion coefficient.
Notably, alternative, and perhaps simpler methods could be used to 

derive eqs. (33) and (54) [73–76], the here used explicit decomposi-
tion into eigenfunctions is chosen because it can be easily adapted to 
the more complex situations of a non-constant effective potential/free 
energy surfaces across the slab, which is a natural extension of the pre-
sented model explicitly presented in appendix B.

Appendix B. Effect of drift on the simple particle model

In terms of the Smoluchowski equation used for the derivation of 
the SPM, we will try and solve it for the simplest scenario involving the 
presence of a none-zero drift term, i.e. constant drift 𝜇 = 𝑐𝑜𝑛𝑠𝑡., for a 
bulk-like slab to estimate the error introduced by our prior omission of 
the drift term.

We therefore attempt to construct the solutions to the following sim-
plified equation:

𝜕𝑧𝑝 =− 𝜇𝑝′ + 𝐷𝑝′′ (55)

We can construct the set of eigenfunctions:

−𝜆𝑛𝑝𝑛 =− 𝜇𝑝′𝑛 + 𝐷𝑝′′𝑛 (56)

𝑝𝑛 =𝑒
𝜇
2𝐷

𝑧 sin
(

𝑛𝜋

𝐿
𝑧
)

(57)

whose eigenvalues are — in agreement with the SPM for 𝜇 = 0 — shifted 
to

𝜆𝑛 =
𝜇2

4𝐷
+ 𝐷

(
𝑛𝜋

𝐿

)2
(58)

and the eigenfunctions turn into:

𝑝𝑛 =𝑒
𝜇
2𝐷

𝑧 sin
(

𝑛𝜋

𝐿
𝑧
)

. (59)
We calculate:
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⟨𝑓𝑛, 𝑓𝑛⟩ =
𝐿

∫
0

𝑒
𝜇
𝐷

𝑧 sin2
(

𝑛𝜋

𝐿
𝑧
)

𝑑𝑧 (60)

= 𝐷

2𝜇

𝑛2
(

𝑒
𝜇𝐿
𝐷 − 1

)
𝑛2 + 𝜇2𝐿2

4𝜋2𝐷2

(61)

as well as

⟨1, 𝑓𝑛⟩ =
𝐿

∫
0

𝑒
𝜇
2𝐷

𝑧 sin
(

𝑛𝜋
𝐿

𝑧
)

𝑑𝑧 (62)

=
4𝜋𝐷2𝐿𝑛

(
1 − (−1)𝑛 exp

(
𝐿𝜇

2𝐷

))
4𝜋2𝐷2𝑛2 + 𝐿2𝜇2 (63)

arriving at:

𝜏 =

∞

∫
0

𝑝(𝑡)𝑑𝑡 (64)

=
∞∑

𝑛=1

⟨𝑓𝑛(𝑧), 𝑝0(𝑧)⟩⟨𝑓𝑛(𝑧), 𝐼⟩⟨𝑓𝑛(𝑧), 𝑓𝑛(𝑧)⟩ 1
𝜆𝑛

(65)

For the potential and initial conditions, we have:

𝑈 = −𝑘𝑇 ln(𝜌)⟺𝜌 = exp(−𝛽𝑈 ) (66)

𝜇 =𝜈 ⋅ 𝐹 = −𝜈𝜕𝑧𝑈 (67)

𝑈 =− 𝜇

𝜈
𝑧 (68)

where 𝜇 is the constant drift, 𝜈 is the particle mobility, 𝑘𝐵 is the Boltz-
mann constant and 𝑇 is the absolute temperature with 𝛽 = 1∕𝑘𝐵𝑇 . We 
also know from the Einstein relation that 𝐷 = 𝑘𝐵𝑇 𝜈, hence:

𝑝0 =𝑐 exp
(
−𝜇𝑧

𝐷

)
(69)

𝑐 =
[

𝐷

𝜇

(
1 − exp

(
−𝜇𝐿

𝐷

))]−1
(70)

Consequently:

⟨𝑝0, 𝑓𝑛⟩ =𝑐

𝐿

∫
0

𝑒−
𝜇
2𝐷

𝑧 sin
(

𝑛𝜋

𝐿
𝑧
)

𝑑𝑧 (71)

=𝑐
4𝜋𝐷2𝐿𝑛

(
1 − (−1)𝑛 exp

(
−𝐿𝜇

2𝐷

))
4𝜋2𝐷2𝑛2 + 𝐿2𝜇2 (72)

Plugging all individual results into eq. (65), after some calculation we 
arrive at:

𝜏 = 2
𝜋4

𝐿2

𝐷

𝜇2𝐿2

𝐷2

cosh
(

𝜇𝐿

𝐷

)
− 1

∞∑
𝑛=1

(
1 − (−1)𝑛 cosh

(
𝐿𝜇

2𝐷

))
(

𝑛2 + 𝜇2𝐿2

4𝜋2𝐷2

)2 (73)

for which no closed analytical presentation is known to us.
We check that the convergence in the no-drift case 𝜇 = 0 is consistent 

with the SPM:

lim
𝜇→0

𝜏 = 4
𝜋4

𝐿2

𝐷

∞∑
𝑛=1

1 − (−1)𝑛

𝑛4
(74)

= 8
𝜋4

𝐿2

𝐷

∞∑
𝑛=1

1
(2𝑛 + 1)4

= 8
𝜋4

𝐿2

𝐷

𝜋4

96
= 1

12
𝐿2

𝐷
(75)

i.e., indeed, the resulting series for the drift-including model is consis-
tent with the simple particle model.

Based on our insights into how the relative error of the observed 
lifetime relation evolves (Fig. 2), we can now make a better estimate of 
1938

the effect of neglecting the drift.
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More notably, we can denote the drift-induced relative change 𝐾(𝛾):

𝐾 (𝛾) = 24
𝜋4

𝛾2

cosh (𝛾) − 1

∞∑
𝑛=1

(
1 − (−1)𝑛 cosh

(
𝛾

2

))
(

𝑛2 + 𝛾2

4𝜋2

)2 (76)

where 𝛾 = 𝜇𝐿∕𝐷 is the scale of the induced drift in relation to the dif-
fusion coefficient 𝐷 and the slice thickness 𝐿. We observe that 𝐾 is 
actually a function in 𝛾2, making the correction independent of the di-
rection or the sign of the induced drift due to the local symmetry.

Then, using eq. (6), we can rewrite eq. (33) to provide us with a new 
relation between 𝐿, 𝐷 and 𝜏 , which also accounts for the second-order 
correction due to 𝜇:

𝐷B(𝐿, 𝜏, 𝜇) = 1
12

𝐾

(
𝜇𝐿

𝐷

)
𝐿2

𝜏
. (77)

In principle, this equation appears to make the derivation of 𝐷B more 
problematic due to the appearance of 𝐷 on both sides of the equation. 
In fact, we can still employ this new relation to provide an estimate 
for how much particle mobility is affected by the density fluctuations 
close to interfaces. More specifically, we know from 𝜌 ∝ exp

(
𝜇𝑧

𝐷

)
, that 

we can obtain the ratio 𝜇∕𝐷 for the use in the argument of 𝐾(𝛾) on the 
r.h.s. by fitting the logarithmic density profile in a slab with a linear 
function and employing the slope of that fit function together with the 
chosen slice thickness 𝐿 to calculate 𝛾 and the resulting 𝐾(𝛾).

We would like to point out, that according to our derivation, the 
first order correction of the diffusion-lifetime relation 𝐾(𝛾) applied in 
eq. (77) can only ever lead to a lower diffusion coefficient 𝐷B than 
according to eq. (33). Furthermore, the error due to the omission of 𝜇
in our derivation of the SPM is dependent on the square of 𝐿, allowing 
for the analysis to limit the impact of the neglected drift term in general 
scenarios.

Appendix C. Simulation methods for water systems

The water is in all systems parameterised by the SPC/E model. After 
creation of the system, an energy minimisation is performed before ve-
locities are initialised according to a Maxwell distribution of the desired 
temperature of 293.15 K. Subsequently, a 5 ns NPT equilibration run at 
ambient pressure is performed to adjust the system density (for details 
for each system see below). A final NVT equilibration run is conducted 
for 1 ns to account for equilibration under production conditions.

In all simulations with water systems the BDP velocity rescaling 
thermostat [77] is used with a coupling time of 1.0 ps, to keep the 
system at 293.15 K. In the NPT runs, the C-rescale barostat is used to 
control the pressure with a coupling time of 5.0 ps. Further parameters 
of the simulation like cut-off radii and treatment of electrostatic inter-
actions are the same as for the IL systems. All water simulations are run 
with GROMACS 2021.3.

C.1. Pure water system

For benchmarking in the pure water system, we used two simula-
tions of pure water in a cubic box, with 1000 and 23419 SPC/E water 
molecules, resulting in box side lengths of 3.1 nm and 8.9 nm, respec-
tively. The system is created from a small box of pre-equilibrated liquid 
water to minimise the required equilibration time. During the NPT run, 
isotropic box scaling was applied to adjust the pressure in the system. 
The production runs over the course of a 10 ns.

C.2. Water in the slit alumina pore

The SLS simulations with a water filled pore (see Fig. 4a) use the 
same solid support as the IL SLV system. However, the solid is mirrored 
to negative 𝑧-direction, to create a slit pore wrapping around periodic 

boundary conditions in 𝑧-direction. At first, the pore is created in an 



K. Höllring, A. Baer, N. Vučemilović-Alagić et al.

empty box that accommodates a pore void slightly larger than is needed 
for the desired amount of water in the pore. This void is then filled with 
10431 SPC/E water molecules and an energy minimisation is performed. 
A single step of equilibration is performed in the NPT ensemble, where 
the box scaling only adjusted the width of the pore to obtain the correct 
liquid density. The resulting system has a size of 10.41 nm in 𝑧-direction 
orthogonal to the sapphire slabs and a resulting pore thickness of about 
6 nm filled with water. The production run of the water slit pore cov-
ered an additional total statistically usable time of 10 ns.

Appendix D. Error estimates

In our paper, we use several differently distributed random variable 
statistics. Most notable among those are the Mean Square Displacement 
(MSD) of the Einstein approach. We generally assume the MSD to be 
the estimated variance of a normal distributed random variable. Hence, 
the MSD is a prime example of a 𝜒2-distributed variable for which we 
can provide an error estimator via the usual estimator for the variance.

Let

𝑆 = 1
𝑛 − 1

∑
𝑛

(𝑋𝑛 − 𝑋)2 (78)

denote the standard unbiased estimator for the variance of a sample set 
of size 𝑛. Then

𝑄 = (𝑛 − 1)𝑆
𝜎2

is expected to be 𝜒2
𝑛−1-distributed (𝜒2 with 𝑛 − 1 degrees of freedom) 

and we can use this to derive a (1 − 𝛼)100%-confidence interval for 𝜎2:

𝑃
⎛⎜⎜⎝𝜎2 ∈

⎡⎢⎢⎣
(𝑛 − 1)𝑆2

𝜒2
𝛼
2 ,𝑛−1

,
(𝑛 − 1)𝑆2

𝜒2
1− 𝛼

2 ,𝑛−1

⎤⎥⎥⎦
⎞⎟⎟⎠ = 1 − 𝛼 (79)

where 𝜒2
𝑝,𝑘

is defined by:

𝑃 (𝑋 > 𝜒2
𝑝,𝑘) = 1 − 𝑝 (80)

with 𝑋 being a 𝜒2
𝑘
-distributed random variable.

Wherever an error or confidence interval for the MSD is denoted in 
our graphs or calculations (e.g. in linear fits for the derivation of 𝐷), 
we use this estimate of the confidence interval with 𝛼 = 0.05.

For the lifetime distributions, our calculations show, that the life-
times are distributed like an overlay of multiple exponential functions. 
To obtain a confidence interval for the mean lifetime, we thus use the 
mid- to long-term approximation of the lifetime being approximately 
exponentially distributed to derive a confidence interval.

Let 𝑋 denote the mean lifetime of a sample set obtained from 𝑛 data 
points, then the (1 − 𝛼)100%-confidence interval for the mean lifetime 𝜏
is given by:

𝑃
⎛⎜⎜⎝𝜏 ∈

⎡⎢⎢⎣
2𝑛𝑋

𝜒2
𝛼
2 ,2𝑛

,
2𝑛𝑋

𝜒2
1− 𝛼

2 ,2𝑛

⎤⎥⎥⎦
⎞⎟⎟⎠ = 1 − 𝛼 (81)

Hence, this sets a confidence interval to estimate the true range of 𝜏

with 𝛼 = 0.05 as well as the estimate of the resulting error of the mean 
diffusion coefficient 𝐷⟂.

Appendix E. Additional software resources

We supply material on the accompanying github project page 
https://github .com /puls -group /diffusion _in _slit _pores. It contains the 
script for the calculation of the SPM+d correction coefficient 𝐾(𝛾) and 
tools to calculate the diffusivities based on Gromacs trajectories. In ad-
dition to the github project, where active development may be going 
on and where we also invite feedback and bug reports, we also offer an 
1939

archived version of the code on Zenodo [78].
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